
THE MATHEMATICS OF THE BRAIN

FINAL PERFORMANCE REPORT

GRANT # FA9550-08-0129, 3/15/2008 - 3/14/2009

Dr. Victor Eliashberg, Avel Electronics

Dr. Yakov Eliashberg, Stanford University

T.OI n®°\ \%M

Disclaimer:
The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defence
Advanced Research Project Agency or the U.S. Government.

Contents

1 General methodology 3
1.1 The problem of system integration 3
1.2 Three general postulates 4
1.3 Falsification principle 5
1.4 On basic mechanisms and specific constraints 6

2 The concept of E-machine 7
2.1 An abstract description 7
2.2 An example of a primitive E-machine 8

3 Experimental system and the list of tasks 11
3.1 Experimental system 11
3.2 The list of tasks 13

4 External system as a generalized RAM 13
4.1 The concept of a generalized RAM (GRAM) 14
4.2 Experiment with a GRAM 15
4.3 Fixed rules and variable rules 16

5 Problem of learning to simulate a GRAM 17
5.1 Defining experiments of training and examination 17
5.2 Proving the theorem of Task 1 18
5.3 Why traditional learning systems cannot learn to simulate GRAM 19

6 Learning to simulate finite-state machines (Task 2) 21
6.1 The main steps for solving Task 2 21
6.2 The concept of a combinatorial machine: behavior of type 4 21
6.3 Two examples of combinatorial machines 22
6.4 Learning behavior of type 4 24
6.5 The concept of a finite state machine: behavior of type 3 25
6.6 Behavior of type 3 as a behavior of type 4 with a feedback 26

7 Learning to simulate behavior of type 0 (Tasks 3 and 4) 26
7.1 The main steps for solving Task 3 26
7.2 The concept of a Turing machine: behavior of type 0 27
7.3 Learning to simulate the finite-state part of a Turing machine 28
7.4 Replacing TAPE and HEAD by a modified GRAM 29
7.5 Computations with the use of external tape 30
7.6 Computations with the use of imaginary tape 31
7.7 The C++ program EROBOT (Task 4) 31
7.8 The myth that behavior of type 0 cannot be learned 32

8 On a neural implementation of primitive E-machines (Tasks 6-9) 33
8.1 An example of an associative neural network with temporal modulation 33
8.2 The dynamics of the winner-take-all choice 34
8.3 The C++ program WTA 36
8.4 What is a neurobiological interpretation of E-states? 36
8.5 The statistical molecular dynamics of E-states 37
8.6 The C++ program EPMM 40

9 Promising directions of research 41

10 List of topics for Phase II (Task 10) 46

1 General methodology

The Mathematics of the Brain (MoB) project is initiated by the DARPA DSO Mathematical
Challenge One: Develop a mathematical theory to build a functional model of the brain that is
mathematically consistent and predictive rather than merely biologically inspired. This section
discusses some unique features of the MoB project that distinguish it from other state-of-the-art
projects aimed at the development of the mathematical (computational) theory of the phenomenon
of information processing in the human brain. In what follows we explain the basic principles
underlying the general methodology of the MoB project.

1.1 The problem of system integration

The main thrust of the MoB project is to tackle the problem of system integration in brain
modeling and cognitive modeling. Currently there exists a large and rapidly growing set of
different computational models of what can be loosely referred to as the parts of the brain and/or
the parts of the brain's behavior. At the same time, very little attention is paid to the question as
to how (and if) such partial models can be integrated in a mathematical theory of the whole brain
as an integrated computing system. We consider this question to be crucial for any consistent
mathematical theory of the human brain and human cognition.

Anyone who was involved in a nontrivial reverse engineering project can safely say that, in
real life, it is seldom (if ever) possible to reverse engineer and understand parts of an unknown
integrated computing system (much less, the parts of the behavior of such a system) without
having a good initial hypothesis about the basic principles of organization and functioning of the
whole system. There is no reason to assume that the situation can be simpler in the case of
reverse engineering the brain. After all, the brain is a real working integrated computing system!

It should be mentioned that the critical importance of the problem of system integration in
brain modeling was well understood in the early days of cybernetics. Here is a revealing quotation
from the neurophysiologist Zopf Jr. (1961) [26]:

"I am intolerant of those who regard the whole of biological data of the phenomena
of biological organization and intelligence as not more than a grab bag from which to
abstract technological goodies. My intolerance is tempered only by the belief that such
casual abstraction may not succeed."

Unfortunately, since the late 1960-s the main trend in brain modeling and cognitive modeling
has been toward system fragmentation rather than system integration. The concept of the model
for the whole brain has been taboo1.

1.2 Three general postulates

Let (W, D, B) be a cognitive model, where W is an external world (environment), D is a set of
human-like sensorimotor devices, and B is a computing system simulating the work of the human
nervous system - for simplicity, call it the brain. The general structure of the cognitive system
(W, £>, B) is illustrated in Figure 1. The system (D, B) will be called a human-like robot or simply
a robot, system (W, D) will be called an external system.

w
yD 1 XB

D B xD | yB

DrtVn-%*

Extern al system

KODOt

—4-—] Brain —*

Figure 1: Cognitive system (Robot,World) as a composition of two machines (W,D) and B

At the system-theoretical level, both B and (W, D) can be treated as abstract machines, the
inputs of B, xB', being the outputs of (W, D), yD\ and vice versa (xD = yB).

Let B(t) denote a formal representation of B at time t, and let t = 0 correspond to the
beginning of learning. Though, in the case of the human brain it is difficult to draw a line
between the development and learning, this approach can be thought of as a reasonable initial
approximation. In the case of a human-like robot, the beginning of learning can be clearly defined.
We proceed from the three general postulates:

PI. There exists a relatively short formal representation of B(0) as an abstract com-
puting system.

For the sake of concreteness, we postulate that the size of this representation does not

1 The big rift between symbolic cognitive modeling and dynamical neural modeling opened after the famous
criticism of the Perceptron [19]. The original spirit of cybernetics has never been restored. The "neural renaissance"
that begun in the early 1980-s has not repaired the damage. Arguably, it increased the rift by creating a form
of dynamical extremism with a strong anti-symbolic mental set. A balanced symbolic/dynamical approach to the
problem of the whole brain - like the one represented by this report - became next to impossible to promote.

exceed several megabytes. The exact size is not important for our purpose. What is impor-
tant is that this size cannot be too big because B(0) is encoded in some form in the human
genome. The whole human genom fits into « 700MB.

P2. The main part of the formal representation of the trained (educated) brain,
B(t), is created in the course of learning.

Let, for the sake of concreteness, t = ^o = 20years. Any formal representation of Bfoo)
must be very long (terabytes?). It must include, in some form, a formal representation of
an individual experience of a person. That is, an overwhelming part of the formal represen-
tation of B(t2o) is created in the course of learning.

P3. The essential difference between B(t) and B(0) is in the state of LTM .

Let B(t) = (H(t),g(t)), where H(t) is the representation of the brain hardware, and g(t)
is the representation of the brain knowledge (brain software). As a zero-approximation hy-
potheses we postulate that H(t) = H(0) = H.

Remark. This is not literally true in the case of the biological brain. A child grows
and becomes an adult. We claim, however, that, functionally, H does not change much.
What changes dramatically is the software, g(t).

1.3 Falsification principle

We treat the problem of the human-like robot (D,B) as a scientific/engineering problem rather
than just an engineering (bionic) problem. The difference is as follows. In the case of the bionic
approach, one uses biological data only as a source of inspiration for introducing different engi-
neering/mathematical ideas. In the case of the scientific/engineering approach one relies not only
on biological inspiration but also on biological falsification.

Falsification principle requires one to pay more attention to the negative facts - the facts that
contradict to one's ideas — rather than to the positive facts - the fact that "confirm" one's ideas.
This falsification strategy is very difficult to promote in the case of brain modeling and cognitive
modeling. Explaining the nature of the difficulties, the neurophysiologist D. Burns (1958) [4]
wrote that, (deling with the brain)

it is distressingly easy to find what one is looking for, and remarkably difficult to
discern the unsuspected or the unwanted.

To appreciate the importance of negative facts consider the following gedanken experiment.
Imagine that we are testing the hypothesis that a certain object is made of gold. We can find
many positive facts "confirming" our hypothesis: the object is heavy, it is yellow, it is shining,
etc. However, all these positive facts have no value if we can show that the density of the object's
material is, say, 8.9g/cm? - that is, much less than the density of gold, 19.3p/cm3. This single
negative fact has more power than all positive facts taken together. Our hypothesis is false no
matter how many more positive facts we can find.

The power of NO follows from the basic properties of the if p then q (p —> q) statement. If
implication q is false, then the proposition p is false. However, if q is true, p can either be true

or false. That is, false theories can produce true implications. These true implications, however,
do not validate a theory. Only false implications have real power. One can say that, in science,
YES is just the absence of NO.

The problem of system integration outlined in Section 1.1 provides a powerful falsification
test. Let a,b,c,... be some basic properties of the brain as an integrated computing system, and
let A,B?C,... be the sets of all possible systems with the properties a,b,c,..., respectively. If one
treats all the above properties as constraints on a single integrated model of the brain, then the
search area for the corresponding model is the intersection Ap|BP|C... The more properties
one considers the smaller becomes the search area. In contrast, if one ignores the requirement
of system integration and treats each property separately - just as a biological inspiration for
studying the classes of systems with the corresponding "biological" properties - the search area
is the union A |J B (J C... Ironically, with the latter approach, the more properties one considers
the bigger becomes the search area. The situation is illustrated in Figure 2.

/CfiTn B n C AUBUC
/j r B

Figure 2: On system integration and falsification.

The essence of the falsification principle is well represented by the famous Sir Arthur Conan
Doyle quotation:

When you eliminate the impossible, whatever remains, however improbable, must be
the truth.

It is worth mentioning that all successful scientific theories rely on refutation. In contrast, all
pseudoscientific theories rely on confirmation.

1.4 On basic mechanisms and specific constraints

The general relationship between the mathematical theory of the behavior of the cognitive system,
(W,D,B), and the mathematical theory of the brain, B, can be meaningfully compared with the
general structure of a traditional physical theory. Let us take the classical electrodynamics as an
example of the latter theory. To get a specific methodological metaphor, consider the problem of
simulating the behavior of electromagnetic field in the Stanford Linear Accelerator (SLAC). The
mathematical model underlying this simulation can be represented as a pair (C,M), where C are
the specific external constraints (boundary conditions and sources) representing the design of the
SLAC, and M are the Maxwell equations describing the basic laws of electricity and magnetism.
The broad predictive power of the classical electrodynamics is a result of an adequate separation
of the basic constraints, M, and the specific problem-oriented constraints, C. Without such an
adequate separation, each new set of specific constrains would lead to a new phenomenological

theory. We argue that, similarly, it is critically important to adequately divide a consistent
mathematical theory of the behavior of system (W,D,B) into "basic constraints", B, and "specific
external constraints", (W,D). That is, to develop such a consistent theory, we should concentrate
on reverse engineering the basic principles of organization and functioning of B(t) (particularly,
B(0)) rather than on the simulation of the specific cognitive phenomena per se. One can safely
say that it would be impossible to reverse engineer the Maxwell equations from the analysis of
the behavior of electromagnetic field in the SLAC.

2 The concept of E-machine

This report deals with a class of brain models (models of B) called the E-machines [6, 7, 8]. In the
general case, a complex E-machine (CEM) is a hierarchical associative learning system built from
several homogeneous associative learning systems called primitive E-machines (PEM). A PEM
can be thought of as a "higher-level" (procedural) formalization of the intuitive notion of a context-
sensitive associative memory (CSAM) [9]. This system-level formalization is largely independent
of a specific neural implementation. In what follows we first give an abstract description of
a PEM and then present a specific example illustrating this concept. The problem of neural
implementation of E-machines is discussed in Section 8.

2.1 An abstract description

A primitive E-machine (PEM) is a system PEM = (X, Y, E, G, fy, fe, fg), where

• X and Y are finite sets of symbols called the input and the output set, respectively;

• G is the set of states called the states of encoded (symbolic) long-term memory (LTM) or
the G-states. The letter 'G' implies the notion of "synaptic Gain". The G-states represent
the symbolic knowledge (software) of an E-machine.

• E is the set of states, called the states of dynamical short-term memory (STM) and intermediate-
term memory (ITM), or the Estates. The letter 'E' implies the notion of "residual Excita-
tion" . An E-machine may have several types of E-states representing different temporary
attributes (dynamical labels) of the data stored in LTM. The E-states serve as the mech-
anism for context-dependent dynamic reconfiguration of the knowledge represented by the
G-states.

• fy :XxExG —► Y is a function called, interchangeably, the output procedure, the
interpretation procedure, or the decision making procedure.2

• /e : X x E x G -► E is a function called, interchangeably, the next Estate procedure, or the
dynamic reconfiguration procedure.

• /5:XxExG->Gisa function called, interchangeably, the next G state procedure, or
the incremental learning algorithm.

2In general, fy is a probabilistic procedure, so the symbol "-+" should be interpreted dynamically, as "compute",
rather than statically, as ilmap".

Note. A PEM may have other types of states. For simplicity, these states are not included in
the above general description.

The work of a PEM is described in discrete time, */, as follows:

(1) y{y) = fy{x{v\e{vU(y)),

(2) e(v+l) = fe(x(v),e(v),g(u));

(3) g(v+l) «/,(*(!/), e(v),g(v));

with initial states e(0) and p(0),

where x{y) G X, y{y) G Y, e{y) G E, and g{y) G G .

In the next section, we present an explicit example of a PEM. The model is simple enough
to be theoretically understandable. At the same time it is sufficiently complex to produce some
nontrivial robopsychological phenomena. (The term "robopsychology" is borrowed from I. Asimov

HO

2.2 An example of a primitive E-machine

Figure 3 illustrates the architecture of a simple PEM. The interpretation procedure fy is divided
into four elementary procedures: DECODING, MODULATION, CHOICE, and ENCODING.
The model uses a single E-state array, e(i).

The next E-state procedure, /e, is similar, in this example, to the fast-charging-slow-discharging
of a capacitor. The model employs a universal learning algorithm, fgi that simply tape-records
input/output associations in the LTM. The recorded association gets an elevated level of residual
excitation to produce an effect of recency. This is described as the addition to the next E-state
procedure.

Variables:

• v G {0,1,...} is a discrete time (the cycle number).3

• x(:) = x(l),..., x{m) is the input vector with m components. In this example, each com-
ponent is treated as a symbol. That is, only the equal/not equal relationship is defined. We
use a special empty symbol, e, to indicate "no data".

• wx(:) = wx(l),..., wx(m), where wx(j) > 0 (j = 1, ..m) is the vector describing the weights
of input symbols.

• gx(:,i) = gx(l,i),... ,gx(m, i) is the vector stored in the i-th location of the Input LTM
(ILTM), where i G {l,...n}.

3 Treated as real-time cognitive models, E-machines can be thought of as operating with a psychological time
step At on the order of 1 — 10msec. More complex models of E-machines with multi-step cycles may use several
time variables, i/l, v2,... with different time steps.

8

x(l)

xü)

x(m)

xy(l)
y(D

y(k)
_±m
xy(p)

y(p)

DECODING, INPUT LEARNING
I i n

gx(I,l)

gx(/,U

gx(m,I

gx(I.i)

gx(/,i)

gx(m,i

s(I)

gx(l,n)

gx(/,n)

gx(m,n

Input LTM
(ILTM)

s(i) s(n)

MODULATION,
NEXT E-STATE

STM
ITM

se(I) se(i) se(n)

CHOICE

gy

*U K« rtn)

I.«

gy(*M)

gy(p,D

gyd.n
gy(M)

gy(p.i)

gyd,n

gy(fc,n

gy(p>n

Output LTM
(OLTM)

ENCODING, OUTPUT LEARNING

Figure 3: Example of a primitive E-machine

• s(:) = (s(l),... ,s(n)) is a similarity array. In general, s(z) is a nonnegative real number
representing a similarity between x(:) and gx(:,i). In this example, we use a very simple
criterion of similarity - the number of matching non-empty symbols. Accordingly s(i) 6
{0,1,...,m}.

• e(:) = (e(l),..., e(n)) is an Estate array. Variable e(i) is a nonnegative real number that
represents the level of residual excitation associated with the z-th location of the LTM. In
this example, we use a single E-state array. In more complex models, several E-state arrays,
el(:), e2(:),..., with different dynamic properties can be used.

• se(:) = (se(l),... ,se(n)) is modulated or biased similarity array. In general, se(i) is an
element of a real array that describes the similarity affected by the residual excitation.

• r(:) = (r(l),... ,r(n)) is a retrieval array. In general, r(i) is an element of a real array
that represents the level of activation of the i-th location of OLTM. In this model, we use a
random winner-take-all choice, so only one component of this array, r(iwin), corresponding
to the winner, iwin, is not equal to zero. Formally, in this example we need only the variable
iwin. The r-array is introduced for the sake of completeness. It does not appear in the
following equations. This array is needed in more complex models of primitive E-machines
that employ more complex encoding procedures.

• 9V{'-^) = #2/(M)> • • -i9y(p,i) is the vector stored in the i-th location of the Output LTM
(OLTM). In this model, components of gy(:,i) axe treated as symbols.

• y(') = 2/(1)» • • • i yip) is the output vector retrieved from OLTM. In this model the output is
read from the winner location of OLTM. Components of y(:) are treated as symbols.

• xy(:) is the input to the OLTM used for writing output data in this memory.

• wptr and wen are the auxiliary variables used to describe the tape-recording learning algo-
rithm. They serve as the write-pointer and the write-enable, respectively.

Parameters:

• a < 0.5 is a parameter that determines the modulating effect of e(i) on s(i) that produces
biassed similarity se(i).

• c < 1.0 is a parameter that determines the rate of decay of e(i). The time constant of decay
is T = 1/(1 — c), so c = 1 — 1/T.

• m is the number of components in the input vector x(:).

• n is the number of locations in the ILTM and OLTM. In this model, it is the size of all
arrays with index i. Namely, s(z),se(i),e(i), gx(:,i), and gy{:,i).

• p is the number of components in the output vector y(:).

Remark. In the experiments discussed in this paper, weights, wx(:), will be treated as parameters.
In more complex experiments the pair (x,wx) can be treated as an input. In fact, in this report,
we will only need wx(j) = 1, for j = 1, ..ra.

Procedures:

DECODING (computing similarity):

for i = 1 : n (this for is applied to expressions (1), (2), and (5))

(1) s(t) = £7=1 wx(j) ■ T(x(j) = gz&i) * £)

where, T{z) = 1, if z * true, else T(z) = 0

MODULATION (computing biased similarity):

(2) se(i) = s(i) -(l + a-e(t))

CHOICE (randomly selecting a winner):

(3) twin :G {i : se(i) = max{se) > 0} = MSET

where :6 denotes the operation of the random equally probable choice of an element from a
set.

10

ENCODING (retrieving data from OLTM):

(4) y(:) = gy{' ,<wn)

NEXT ESTATE PROCEDURE (dynamic reconfiguration):

(5) if (s(i) > e(i)) e(i)(v + 1) = s(i) ; else e(i)(u + 1) = c • e(i); end

where, e(i)(i/ 4- 1) is the value of e(i) at the next moment u + 1. For simplicity, we do not
write f in the current values of the variables. That is, e(i) is the same as e(i)(z/), s(i) is the same
as s(i)(i/), etc.

NEXT G-STATE PROCEDURE (learning)

(6) z/(wen = 1) gx(:, wptr)(v + 1) = x(:); ^(:, wprr) = sey(:);
wptr[v -f 1) = wptr + 1; end

Remark. Expression (6) tape-records input and output vectors in the ILTM and OLTM,
respectively, when recording is enabled, wen = 1. For simplicity, in this model, we assume that
the weights of input symbols, wx(:), do not affect recording. We will always have wx(j) > 1.0.

ADDITION to the NEXT ESTATE PROCEDURE (the recorded location of LTM,
i = wptr, gets initial residual excitation)

(7) if (wen == 1) e(wptr)(u + 1) = s(wptr) = Y!?=\ WXU) ' T(x(j) ^ c); end

Remark. The truth function T(z) is defined in expression (1). Expression (7) adds residual
excitation to the location of ILTM with i = wptr, - the location in which data was just recorded.
This happens only if recording is enabled, wen = 1. The level of added residual excitation,
e(wptr), is equal to the one that would be produced if the input vector x(:) were already recorded
in t his location of ILTM, that is, as if gx(:, wptr) = x(:). This trick allows one to avoid introducing
intermediate steps in the v — th cycle.

System of references. The model described above will be referred to as Model (2.2) or PEM
(2.2), meaning the model (PEM) described in Section 2.2. Similarly, expression (2.2.6) will mean
expression (6) of Section 2.2, etc.

3 Experimental system and the list of tasks

3.1 Experimental system

The structure of the specific cognitive system, (W,D,B), used in this report is shown in Figure 4.
The system is intentionally simplified to make it as understandable as possible without losing its
ability to illustrate the basic ideas. The ideas are scalable and can be employed in much more
complex systems arranged on intuitively similar principles.

The robot, (D,B), interacts with an external world, W, represented by a keyboard and a screen.
The screen is divided into squares (only one row of squares is shown). For simplicity, we assume
that the robot's eye can scan only one square at a time, call it the scanned square. We also assume

11

"

External system (W,D)

NM2
L—Q>

(v)LQ
yi y2

y3

motor
control

AM

Teacher
y3 ---<

xy

Figure 4: Experimental system

that the system has some eye tracking device (not shown), so when the robot depresses a key the
character appears in the scanned square. It is easy to see that the described external system,
(W,D), behaves, essentially, as a RAM.

Two motor inputs, addr and din, serve, respectively, as the address and data inputs of a
RAM. The sensory (visual) output, dout, serves as the data output . There is no control input
similar to the unite-enable input of a RAM. We can say that system (W,D) is in the write mode
when there is a nonempty motor input, din. Otherwise, the system is in the read mode. We will
formalize this verbal description as the concept of a generalized RAM (GRAM).

The robot's brain is divided into four parts:

1. Associative learning system AS responsible for working memory and mental imagery. The
goal of this system is to learn to simulate the external system (W,D). In this case, (W\D)
works as a RAM.

2. Associative learning system AM responsible for motor control. The goal of this system is to
learn to simulate the teacher.

3. Sensory nucleus NS. In this case, NS works as a multiplexer that switches between the output
from the eye, dout, and the output from AS, AS.y.

Note. We use traditional notation in which A.y means variable y of a unit (object) A.

4. Motor nucleus NM. In this case, NM works as a multiplexer that switches between the output
of the teacher, call it T.y, and the output of system AM, call it AM.y. Both the teacher
and AM have three outputs denoted as yl,y2,y3.

Note. We use the same identifiers for the local variables of different units. As mentioned
above, we add the name of a unit to the name of a local variable to transform this local

12

variable into the corresponding global variable of the whole system. That is, T.y2 means
output y2 of unit T; AM.yl means output y\ of unit AM, etc.

We will use Model 2.2. with m = 2 and p = 1 as unit AS. We will use the same model with
m = 2 and p = 3 as unit AM. In the case of unit AS we will need residual excitation e(:), so we
will have AS.a > 0. In the case of AM, we will set AM.a = 0.

3.2 The list of tasks
Here is a list of tasks from the project proposal.

Task 1. A theorem providing the proof that a primitive E-machine with a single E-state function
can learn to simulate a RAM buffer without moving symbols in LTM.

Task 2. A theorem providing the proof that a primitive E-machine with a one-step delayed
feedback can learn to simulate the finite-state part of any Turing machine.

Task 3. A theorem providing the proof that a system consisting of two primitive E-machines,
such as the brain of the robot of Figure 4, can learn to (mentally) simulate any Turing
machine - that is, without using an external read/write memory.

Task 4. Develop a C++ program simulating the system of Figure 4.

Task 5. Intermediate performance report

Task 6. Develop a C++ program simulating a neural network performing DECODING.

Task 7. Develop a C++ program simulating a neural network performing random CHOICE.

Task 8. Develop a C++ program simulating a neural network performing ENCODING.

Task 9. Develop a C++ program simulating a neural network performing the NEXT-E-STATE
procedure

Task 10. Compile a list of topics for the Phase II of the MoB project.

Task 11. Final performance report.

4 External system as a generalized RAM

In this section and the next one we will go through the following steps:

Step 1. Show that the external system (W,D) of Figure 4 functions essentially as a symbolic
RAM buffer. Formalize the notion of such a symbolic RAM buffer by introducing the
concept of a generalized RAM (GRAM).

Step 2. Dehne the problem of learning to simulate a GRAM.

Step 3. Prove the theorem of Task 1.

13

4.1 The concept of a generalized RAM (GRAM)

In what follows we formalize the verbal description of the work of the external system shown in
Figure 4 as the concept of a generalized RAM (GRAM). Figure 5 gives two different interpreta-
tions of this important concept.

a)

me:

External system

D

i doutt

~^~^ \t addr

"] din

»i

b)

J i n

mem(l) mem(i) mem(n)

CK idr i ■

-*-
/

dout
ain

Figure 5: External system as a generalized RAM (GRAM), a) robo-psychological interpretation;
b) concept of a generalized RAM (GRAM)

DEFINITION:
A generalized RAM (GRAM) is a system (A,D,M, /) (see Figure 5), where

• A = {ai,..., On} is a set of symbols called address set For the sake of simplicity we will
assume that A = {l,...,n}. In a more general case we would need to define a mapping
A<-{l,...,n}.

• D = {d\,..., dm, e} is a set of symbols called data set, where e is the empty symbol meaning
"no data".

• M = D x ... xD = Dn

is the set of memory states represented as memory arrays (mem(l),... ,mem(n)), where
mern(i) € D is the data stored in the z-th location of GRAM.

• /:AxDxM-»DxMisa function computing the the output data and the next memory
state.

14

Function / can be represented as the following MATLAB-like program.

(1) if {din == e) dout = mem(addr);

(2) else dout = din; mem(addr) = din; end

Note. Expressions are numbered independently, starting with (1), in each section. To refer
to an expression from a different section we add the section number to the expression number.
For example, expression (2.3) is the expression (3) from section 2.

The main difference between a GRAM and a conventional RAM is:

1. In the case of a GRAM, both address and data are treated as symbols: that is, only the
equal/not equal relation is defined for the elements of A and D.

2. GRAM is always in the write mode when input data is present, din ^ e. Only if input data
is not present, din — e, GRAM is in the read mode. With this approach, we do not need a
special control input, e.g., write.enable, to indicate the write or read mode.

3. In the case of GRAM we do not need A = {1, 2,..., n}. We just need to have a mapping
A <-► {1,2,..., n}. We also do not need input data symbols to be the same as output data
symbols. For simplicity, we used the same data set D for din and dout rather than two
different sets, say, Dm and D™*. What we need is a mapping, Dm <-> D0"'. Any mappings
A «-> {1,2,... ,n} and Dm «-» D0"' can be learned, so specifying specific mappings makes
no difference. We do not even need one-to-one mappings: several symbols form A could be
associated with the same symbol from {1,2 , n}, and several symbols from Dm with the
same symbol from D^.

4.2 Experiment with a GRAM

To get used to the notion of GRAM, it is helpful to follow the experiment with a GRAM shown
in Figure 6, where A = {1,2}, and D = {a, 6, e}. The three-row table in the upper part of the
figure displays the input/output sequence of GRAM as a function of discrete time v = 0,1, ..9.
The din = e entries are shown as blank squares. The two-row table in the lower part of the
figure displays the contents of the two memory locations, mem(l), raera(2) as functions of v. The
mem(i) = e entries are shown as blank squares. Let us follow the 10 cycles of the experiment:
i/ = 0:
Memory is empty: mem(:) = (raem(l),raera(2)) = {e,e). Input: (addr,din) = (l,a), produces
output: dout = a, and writes a into location 1: raem(l) = a.
v= 1:
Memory state is: raera(:) = (a, e). Input: (addr,din) = (2, a), produces output: dout = a, and
writes a into location 2: mem(2) = a.
i/ = 2:
Memory state is: raera(:) = (a,a). Input: (addr,din) = (1,6), produces output: dout = 6, and
writes 6 into location 1: mem(l) = 6.
i/ = 3:

15

V

addr
din
dout

mem(l)
mem(2)

0123456789 10
1 2 l 2 l 2 l l 2 2

a a b b a a
a a b b b b a a a a

a a bb bb a a a a
a a b[b[brb|b_ a a)

Figure 6: Experiment with a GRAM. A = {L 2}, D = {a, 6, e}. Empty symbol e is shown as a
blank square.

Memory state is: mem(:) = (6, a). Input: (addr, din) = (2,6), produces output: daui = 6, and
writes 6 into location 2: mem(2) = 6.
i/ = 4:
Memory state is: mem(\) = (6,6). Input: (addr,din) = (1,£), reads data from location 1:
dout = mem(l) = 6. Memory state does not change.
i/ = 5:
Memory state is: mem(:) = (6,6). Input: (addr, din) = (2, e), reads data from location 2:
dout = mem(2) = 6. Memory state does not change.
i/ = 6:
Memory state is: mem(:) = (6,6). Input: (addr,din) = (l,a), produces output: dowi = a, and
writes a into location 1: mem(l) = a.
i/=7:
Memory state is: mem(:) = (a, 6). Input: (addr, din) = (l,e), reads data from location 1:
dout = mem(l) = a. Memory state does not change.
i/ = 8:
Memory state is: mem(:) = (a,b). Input: (addr, din) = (2, a), produces output: dout = a, and
writes a into location 1: mem(2) = a.
z/ = 9:
Memory state is: mem(:) = (a, a). Input: (addr,din) = (2,e), reads data from location 2:
dott* = mem(2) = a. Memory state does not change.

4.3 Fixed rules and variable rules

Analyzing the three-row input/output table shown in the upper part of Figure 6 we can discover
two types of x —> y rules, where x = (addr, din) and y = dout:

1. Rules of the type (addr, din ^ e) —► dout, call them fixed rules. In this specific example, the
fixed rules are: (1,o) -* a, (2,a) —> a, (1,6) —► 6, and (2,6) —► 6. There arem-n = 2-2 = 4
such rules. Fixed rules can be easily extracted from the shown xy-sequence by different
learning algorithms.

2. Rules of the type (addr, din = e) —> dout, call them variable rules. In this example, the
variable rules are: (l,e) —♦ dout, and (2,e) —♦ dout. There are n variable rules. The output
part, dout, of a variable rule depends on the most recently executed fixed rule with the same

L6

address. For example, the output of rule (l,e) —> dout at */ = 7 is dout — a, because the
most recently executed fixed rule with addr = 1 is rule (l,a) —► a at 1/ = 6. Variable rules
cannot be correctly executed by a learning system that does not save information about the
most recently executed fixed rules.

It is useful to view fixed rules as a tool for assigning the right parts of variable rules. With this
approach, we can say that the meaning or value of an address symbol in a variable rule depends
on the most recent assignment. In the discussed example, each address symbol from A = {1,2}
can be assigned any of two meanings (data values) from D — {e} = {a, b}.

5 Problem of learning to simulate a GRAM

5.1 Defining experiments of training and examination

xl

addr

x2

din

AS

GRAM

xy
sell

NS

NS.y

dout

Figure 7: Experimental setup for learning to simulate a GRAM

The problem of learning to simulate a GRAM can be defined as a traditional supervised
learning problem illustrated in Figure 7. Figure 7 is just a redrawn part of Figure 4 in which
external system (W,D) is replaced by the GRAM. We keep the name AS for the learning system.
We could use any other name since the problem of learning to simulate a GRAM is a problem
independent of Figure 4. Inputs AS.xl and AS.x2 are connected to the addr and din inputs of the
GRAM, respectively. Input AS.xy ~ that can be thought of as the desired output - is connected
to the output of the multiplexer NS.y. GRAM plays the role of the teacher for system AS.

To prove the theorem of Task 1 we assume that system AS is replaced by Model 2.2 with m=2,
and p=l. That is x(:) = x(l),x(2) € A x D and y(:) = y(l) G D. It is convenient to divide an
experiment with the system of Figure 7 into two stages: training and examination=test:

Training. We assume that training starts at v = I/O and lasts until v «= i/l — 1, where v\ is
the first moment of examination. We also assume that the following conditions are satisfied
during training:

1. sei = 1, and, accordingly, xy = dout.

2. At the beginning of training Model 2.2 has empty ILTM and OLTM and zero residual
excitation. That is, for i = 1 : n gx(l,i)(uO) = gx(2,i){yG) = e\ gy(l,i)(vO) = £, and
wptr(uO) = 1.

17

3. Learning is enabled that is, wen = 1. We assume that and AS has sufficiently big LTM
to record all training sequence. That is AS.n > v\ — vO, where AS.n is the number of
locations of LTM of Model 2.2.

4. Training continues until each pair {addr, din) from A x (D — {e}) is presented at least
once. This means that each fixed rule of the simulated GRAM was demonstrated to
AS at least once. Let m be the number of nonempty data symbols of GRAM. The
number of fixed rules, n fixed = n-m, where n is the number of address symbols. That
is, v\ — I/O > nfixed.

Examination. At this stage, sei = 0, and AS.xy = NS.y. For simplicity, we assume that AS
does not learn during this stage, that is, wen = 0. This requirement is not necessary. If
AS.n is big enough, AS can continue self-learning during this stage. It will not affect t ho
ability of AS to simulate GRAM.

5.2 Proving the theorem of Task 1

Theorem 1. The PEM described in Section 2.2 (Model 2.2) used as system AS in the experimental
setup of Figure 7 can learn to simulate a GRAM from a sample of the GRAM's behavior of the
length > n-m.

Proof. We begin with a verbal explanation of the effect of working memory . The effect is produced
by decaying residual excitation, e(i), associated with locations of LTM.

Let the 2-th locations of the LTM (ILTM and OLTM) contain the record of the following
fixed rule: gx(l,i) = a,gx(2,i) = d,gy(\,i) = d, where a £ A and d £ T> - {e}. The residual
excitation e(i) associated with this location can reach the maximum possible level, emax — 2. in
two situations:

1. At the next moment after the rule was recorded in the i-th. location. This is the result of
expression (7) from Section (2.2) (expression (2.2.7)) which sets residual excitation at the
moment of recording.

2. If the rule is already recorded and input is x{\)(v) = a, and x(2)(v) = d. In this case,
e(i)(v + 1) = 2 is a result of expressions (2.2.1) and (2.2.5).

Once the e(i) = emax is set, we can say that the rule (o, d, d) is placed in working memory.
The reason for this statement is that, if we send input x(l) = a x(2) = e the output y(l) will
be retrieved from one of the locations of LTM with the highest level of residual excitation among
locations for which gx(l, i) = a. Locations for which gx(l, i) ^ a will have s(i) = 0 due to expres-
sion (2.2.1). Accordingly, due to expression (2.2.2), for these locations se(i) = 0 independently
of the level of residual excitation. This effect of executing the most recent rule placed in working
memory will last until e(i) decays below a certain level, eloss. For this model eloss = 1 and the
modulating coefficient, a, in expression (2.2.2) must be less than l/emax = .5. Due to expression
(2.2.5), the time of decay of e{i) from emax to eloss is

(1) tmax = In (eloss /emax)/ In (c) = - \n(emax / eloss) • ln(l - 1/r) > r • ln(emax/eloss)

18

where c = 1 — 1/r, and, for this model, emax/eloss = 2. We can transform this qualitative
explanation into a rigorous proof by verifying the following statements:

Si. At 1/ = v\ (the beginning of examination) LTM of AS contains at least once any fixed rule
(addr, din, dout) eAxD'xD' where D' = D - {e}. Formally,

(2) V (addr, din, dout) € AxD'xD' 3i(gx(\,i),gx(2,i),gy(l,i)) = (addr, din, dout))

This statement follows from expression (2.2.6) and the definition of the experiment of
training. During training wen = 1, so the training sequence containing all fixed rules is
tape-recorded in LTM.

52. At v — v\ all location of LTM containing fixed rules have e(i) > 0 due to expression (2.2.7).
Let tmax > v2 — i>0. From expression (1) we find that to guarantee that e(i) = emax = 2
will not decay below eloss during the entire experiment of training and examination it is
sufficient to have tmax > v2 — vO. This condition is satisfied if

(3) r > Train = (i/2 — i/0)/ln(eloss/emax) = (v2 — i/0)/ln2

53. Suppose in the course of examination we test AS only in the read mode. That is, we send
only inputs addr, din with din = e. Then y(l) will be retrieved from a location ird for which
gx(\,ird) = addr and e(ird) has the highest level among all locations with gx(l, i) = addr.
If T > rmin, it is guarantied that e(ird) > eloss, so y(l) will be retrieved from the location
in which a certain data, din ^ e was recorded most recently and, therefore, y(\) = din.
This is exactly how GRAM would react to this input.

54. Let vw and i/r, where ur > i/w be some "write" and "read" moments in the course of
examination, such that x(l)(vw) = addr, x(2)(yw) = din ^ e and x(l)(vr) = addr,
x(2)(ur) = e. Let there be no other input between vw and vr with the same x(l) and
different x(2) ^ e. Due to expression (2.2.5) e(i)(uw -f- 1) = emax = 2 for all i 6 {i :
gx(l,i) = addr,gx(2,i) = din). Accordingly, due to what was said in S3, y(\)(vr) = din.
Again, AS reacts exactly as GRAM.

This proves the theorem, since all other possible cases of "writing to working memory" and reading
from this memory can be reduced to S3 and S4. D

Why, in this model should the data loss level, eloss, be set at 1? The reason for this is that the
residual excitation e(i) = 1 can be created in a wrong location by x(2) = din ^ e. Accordingly,
only the residual excitation higher than 1 can be relied upon. The e(i) > 1 can only be the
result of decay from level emax=2. The latter level can be set only by the input x(l) = addr,
x(2) = din ^ e. This input corresponds to writing non-empty data, din ^ e, to an address, addr,
of GRAM.

5.3 Why traditional learning systems cannot learn to simulate GRAM

We are going to explain why many traditional learning systems cannot learn to simulate a GRAM.
Intuitively, the obvious cause of this limitation is the loss of information about the relative order

19

of observed input events. To formalize this intuition, consider a system M the work of which is
represented in the following general form:

(4) y{y) - f(x(v), x{y - 1),..., s(0), y(v - 1),..., y(0))

where x(v) G X, and y(v) 6 Y).

The work of all learning systems we are aware of can be represented in this general form. Usually,
the I/O sequence, x(v - 1),..., x(0), y(v - 1),..., t/(0) is transformed into a state of LTM by a
learning algorithm. The output, y(v), is then computed from the current input, x(v), and the
current state of LTM. Some systems also use different kinds of STM. (For example, in the case of
Model 2.2, the STM was represented by the E-state array e(:).) In the general form (4), we do
not need the concepts of LTM, and STM, and the concept of a learning algorithm. Theoretically,
a learning algorithm that loses information can only reduce the possibilities of system M. Our
goal is to show that this is happening in many traditional learning systems.

Definition. We will say that system M loses information about the order of events in the input
sequence if there exist i/x and 1/2, where v > 1/2 > v\ > 0, such that for any a, 6 € X with a^b the
output of system M at the moment v, y(v), is the same for x(vx) = a, xfa) = 6, and x(v\) = 6,
x(v2) = a. That is if inputs at vx and u2 change places.

Theorem 2. No system M satisfying the above definition can learn to simulate GRAM.

Proof We prove this theorem by contradiction. It is sufficient to use a specific example of GRAM
with A = {1,2}, and D = {a, b,s} discussed in Section 4.2. It is easy to see that if M cannot
simulate this GRAM it cannot simulate a GRAM with bigger address a nd data sets, because a
bigger GRAM can always simulate a smaller GRAM. Suppose M satisfies the above definition and
nevertheless can simulate the specified GRAM. Let us make the following test. At 1/ = i/u we send
input x(i/i) = (addr, din) (i/\) = (l,a), and at 1/ = 1/2, we send input 1(1/2) = (addr,din)(i/2) =
(1,6). We make sure that no other input between v\ and V2 has addr = 1, and din ^ e. At the
moment v we send input x(v) = (addr, din)(v) = (l,e). According to the assumption that M
simulates the described GRAM the output y(v) must be equal to 6, since din — b was written to
addr = 1 last. Let us change the order of inputs at vx and i/2. Now x(v\) = (addr, din)(i/i) = (1,6),
and x(i/2) = (addr, din)(v2) = (l,a). According to the definition of M the output y(v) = dout(v)
must be the same as before, that is, it must be y(i/) = dout(v) = 6. However, the output of the
GRAM is now dout(v) = a since din = a was written to addr = 1 last. This contradiction proves
the theorem. D

Remark. Using computer simulation, we tested a number of traditional learning systems
against the loss-of-information-about-order criterion specified by the above definition. We found
that all tested systems satisfy this criterion, and hence they cannot learn to simulate GRAM. For
example, we claim that this result holds for all systems with distributed associative memory and
all systems that employ various types of gradient-descent and statistical-optimization learning
algorithms. We leave it to the researchers who study these types of learning systems to rigorously
prove this interesting negative result.

Recall what was said in Section 1.3. The GRAM simulation problem offers an important
falsification test - much more difficult than the famous XOR problem.

20

6 Learning to simulate finite-state machines (Task 2)

6.1 The main steps for solving Task 2

We proceed in the following steps:

Step 1. Define the concepts of a deterministic and probabilistic combinatorial machines and
the notion of behavior of type 4.

Step 2. Prove that Model 2.2 with a = 0, TO = 1, p = 1, and sufficiently big LTM (n as big
as needed) can be trained to simulate, in principle, any probabilistic combinatorial machine
with rational probabilities.

Step 3. Define the concepts of a deterministic and probabilistic unite-state machines and the
notion of behavior of type 3. Show that any finite-state machine can be implemented as a
combinatorial machine with a one-step delayed feedback.

Step 4. Define the problem of learning to simulate a behavior of type 3.

Step 5. Prove the theorem of Task 2 using Model 2.2 with a = 0,m = 2,p = 3, and n big
enough to store the program of the simulated Turing machine.

6.2 The concept of a combinatorial machine: behavior of type 4

Definitions:

1. A deterministic combinatorial machine is a system M=(X,Y,/), where

• X is a finite nonempty set of input symbols called the input set or input alphabet.

• Y is a finite nonempty set of output symbols called the output set or output alphabet.

• / : X —► Y is a function called output function.

The work of M is described in discrete time v as follows :

(i) wM = /(*M);

where, y{y),b € Y, and x{y),a G X.

2. A probabilistic combinatorial machine is a system MP=(X,Y,/P), where

• X and Y are the same as before.

• fp : X x Y —* [0,1] is the function of output conditional probabilities satisfying the
condition: for all x € X S(yeY) fp(x^v) = *•

The work of Mp is described in discrete time v as follows :

(2) P(y{u) = b | x[u) = a) = /„(a, b);

21

where, P(B \ A) is the conditional probability of event B given event A,
y(i/), b £ Y, and x(v), aeX.

Note. A deterministic combinatorial machine is an extreme case of a probabilistic combi-
natorial machine with fp(a,b) G {0,1}.

3. A behavior that can be represented in terms of a combinatorial machine will be called a
behavior of type 4- In psychological terms, this behavior can be interpreted as the classical
S —> R (stimulus —> response) behavior.

Note. We use a classification of the general types of behavior and the levels of com-
puting power similar to Chomsky's hierarchy of formal languages [5]. We added type 4 to
refer to combinatorial machines. As is known, types 3, 2, 1, and 0 correspond, respectively,
to finite-state machines, context-free grammars or push-down automata, context-sensitive
grammars, and Turing machines. The lower the type number, the higher is the level of
computing power needed to simulate the corresponding type of behavior. In what follows,
we are interested only in types 4, 3, and 0.

6.3 Two examples of combinatorial machines

To get used to the concepts of a deterministic and probabilistic combinatorial machine it is helpful
to understand in details the two simple examples shown in Figure 8 a) and b).

—- a b cl
1 3 2

a b c b a c b c b b a
1 3 2 2 1 2 1 2 1 1 2|

a) b)

Figure 8: Tables of associations corresponding to a) deterministic, and b) probabilistic combina-
torial machines.

a) Example of a deterministic combinatorial machine:

Let M = (X, Y, /) be a deterministic combinatorial machine with the input alphabet
X = {a, 6, c}, the output alphabet Y = {1,2,3} and the function / : X —► Y repre-
sented as the set of pairs, / = {(a, 1), (6,3), (c, 2)}. It is useful to visualize / as the table,
call it the table of associations, shown in Figure 8 a.

At each moment v, the work of machine M can be described with the use of the following
algorithm that interprets the table of associations. We will refer to such an algorithm as an
interpretation procedure:

1. Take an input symbol x(v) 6 X. For example, let x(v) = b.

2. Find the column, i with the matching symbol in the upper row. In this case, column
i = 2 has symbol b in the upper raw.

22

3. Take the symbol from the second raw of the i — th column and send it to the output.
In this case, i = 2, and y{v) = 3.

b) Example of a probabilistic combinatorial machine:

Let Mp = (X, Y, fp) be a probabilistic combinatorial machine with the input alphabet
X = {a, 6, c}, the output alphabet Y = {1,2,3} and the function of output conditional
probabilities, fp : X x Y —> [0,1], represented by the table shown in Figure 8 b. Let I(x)
be the set of columns with symbol x in the first row, and let I(x, y) be the set of columns
with symbol x in the first row and symbol y in the second raw. The conditional probability
is determined by the following expression:

(3) P{ y{v) = b | x(v) = a) = /„(a,6) = |I(a,6)|/|I(a)|;

Table of Figure 8 b gives the following values for fp:

/p(a, 1) = |I(a, l)|/|I(a)| = 2/3, where 1(a) = {1,5,11}, and I(a, 1) = {1,5}.

/p(a, 2) = |I(a, 2)|/|I(o)| = 1/3, where 1(a) = {1,5,11}, and I(a, 2) = {11}.

fp(a,c) = |I(a, l)|/|I(a)| = 0/3, where 1(a) = {1,5,11}, and I(a,c) = {}.

/p(6,l) = |I(6,1)|/|I(6)| =3/5, where 1(6) = {2,4,7,9,10}, and 1(6,1) = {7,9,10}.

/p(6,2) = |I(a, 2)|/|I(6)| = 1/3, where 1(6) m {2,4,7,9,10}, and 1(6,2) - {4}.

/p(6,3) = |I(a,3)|/|I(6)| = 1/3, where 1(6) = {2,4,7,9,10}, and 1(6,3) = {2}.

/p(c, 1) - |I(c, l)|/|I(c)| - 0/3, where 1(c) = {3,6,8}, and I(c, 1) = {}.

/p(c,2) = |I(c,2)|/|I(c)| = 3/3, where 1(c) = {3,6,8}, and I(c,2) = {3,6,8}.

/p(c,3) = |I(c,3)|/|I(c)| = 0/3, where 1(c) - {3,6,8}, and I(c,3) = {}.

The following probabilistic interpretation procedure simulates the described machine:

1. Take an input symbol x{v) £ X. For example, let x{v) = 6.

2. Find the set 1(6) = {2,4,7,9,10}. Randomly select an element, ir(t from 1(6). Let
ird = 7.

3. Read the symbol from the second raw of the ird = 7 column and send it to the output.
In this case, y(v) = 1.

DEFINITION. The columns of the table of associations are (interchangeably) called associa-
tions—rules—productions—commands of a combinatorial machine.

Unlike the case of GRAM, the behavior of a combinatorial machine is fixed and is completely
represented by its rules=commands. In the case of a deterministic combinatorial machine, the
number of commands is N% = |X|. In the case of a probabilistic combinatorial machine, the
number of commands is N£ = |X| • |Y|. Note that, in the case of a probabilistic combinatorial
machine, the size of the table of associations must be larger than N£ to represent the probabili-
ties. Only the rational probabilities, m/n, - where m is a nonnegative integer, and n is a positive
integer - can be represented in this way.

2:^

6.4 Learning behavior of type 4

In what follows we use experimental setup shown in Figure 9. We assume that PEM is organized
as Model 2.2 with a = 0, m = 1, and p = 1. Since a = 0, the STM of the model is turned off and
the values of e(:) and c make no difference. As in Section 5.1, we divide an experiment into two
stages: training and examination.

PEM

* Teacher

xy
| sei

-K>- yN

yT

Figure 9: Experimental setup for training a PEM to simulate a combinatorial machine.

Training. Training starts at v — v0 and lasts until v = v\ — 1, where v\ is the first moment of
examination. The following conditions are satisfied:

1. sei = 1, and, accordingly, xy = yT.

2. At the beginning of training, LTM is empty. That is, for i = 1 : n gx(l,i){vQi) == e;
gy(l,i)(i/0) = e, and wptr(i/0) = 1.

3. Learning is enabled: wen = 1. We assume that the LTM is big enough to store all
training sequence. That is n > v\ - I/O.

Examination. At this stage, sei = 0, and xy = y. For simplicity, we assume that PEM does
not learn during this stage, that is, wen = 0. This requirement is not necessary. If n is big
enough, PEM could continue recording data in its LTM.

Theorem 3. Let M = (X, Y, f) be a deterministic combinatorial machine. Let each command of
these machine be demonstrated at least once during training. At the stage of examination PEM,
specified above, will correctly simulate M.

Proof. Model 2.2 with a = 0, m = 1, and p = 1 performs the probabilistic interpretation procedure
described in Section 6.3, where the table of associations is represented as gx(l,:), gy{l,:). Namely,

1. Expressions (2.2.1) and (2.2.3) select the set of matching locations in gx{\,:) (DECODING,
and CHOICE). Expression (2.2.2) has no effect: se(i) = s(i) because a — 0.

2. Expression (2.2.4) reads the symbol from the selected location of gy(l,:).

Due to the specified conditions of training, at the beginning of examination, v = vl, the table
(px(l,:), gy{\, 0)(^1) includes at least once each command of machine M. This proves the theorem.

24

Note. To accomplish Task 2, it is sufficient to prove the above theorem for the case of a
deterministic combinatorial machine. However, it is interesting to mention that if: a) M is a
probabilistic combinatorial machine, b) training lasts long enough, and c) symbols from X are
presented with equal probabilities, then the resulting table of associations ((gx(l, :),gy(l, :))(^1)
will correctly approximate the conditional probabilities of M. The longer the training the better
will be the approximation.

6.5 The concept of a finite state machine: behavior of type 3

Definitions:

1. A deterministic finite-state machine is a system M=(X,Y,Q,/), where

• X is a finite nonempty set of input symbols called the input set or input alphabet

• Y is a finite nonempty set of output symbols called the output set or output alphabet

• Y is a finite nonempty set of state symbols called the state set .

• / : X x Q —> Q x Y is a combined next-state and output function.

Note. Traditionally, /, is divided into two functions, fq:Xx Q —> Q and fy :
Xx Q->Y called, respectively, the next-state function and the output function. For
our purpose, it is more convenient to combine these two functions into a single function.

The work of M is described in discrete time v as follows :

(4) (q(v+i)M»))-ftor), «M)i

where, y(v) £ Y, and x(i/),a € X.

2. A probabilistic finite-state machine is a system MP=(X,Y,Q,/P), where

• X, Y, and Q are the same as before.

• /p : X x Q x Q x Y —► [0,1] is the combined function representing the next-state and
output conditional probabilities. fp satisfies the condition: for all (x, q) G X x Q

£((9\y)€QxY)/(a:'0i9,»2/) = L

The work of Mp is described in discrete time v as follows :

(5) P(q(v+l) = c, y{u) = d \ x(v) = a, q(y) = b)= /p(a,6,c,d);

where, x(i/), a € X, q(v + 1), q(v), c, 6 € Q, and y(v), d € Y,

Note. A deterministic finite-state machine is an extreme case of a probabilistic finite-state
machine with /p(a, 6, c, d) £ {0,1}.

3. A behavior that can be represented in terms of a finite-state machine is called a behavior of
type 3.

25

6.6 Behavior of type 3 as a behavior of type 4 with a feedback

11 is easy to show that any behavior of type 3 can be represented as a behavior of type 4 with a
one-step delayed feedback. Let M=(X,Y,Q,fl) be a finite-state machine, and let Ml=(Xl,Yl,f2)
be a combinatorial machine, such that XI = X x Q and Yl = Q x Y. The work of Ml is described
as follows:

xl(v) yl(v)

x2(v+l)=y2(v)
Ml

y2(v)

T=l

Figure 10: Replacing a finite-state machine by a combinatorial machine with a one-step delayed
feedback.

(6) (yl(v),tfl{v)) = fl(xl(v),*2(v));

where x\(v) € X, x2(v) <E Q, y\{y) G Y, and y2{v) € Q.

Let us introduce a one-step delayed feedback from output y2 to input x2. We have

(7) *2(i/)=y2(i/-l);

Renaming xl as x, x2 as q, y\ as y, fl as /, and substituting (7) into (6) we get expression
(4) describing the work of the finite-state machine M. Since function fl can be selected arbitrar-
ily, any deterministic finite-state machine can be implemented as a deterministic combinatorial
machine with a delayed feedback. It is easy to see that the same holds for probabilistic machines.

7 Learning to simulate behavior of type 0 (Tasks 3 and 4)

7.1 The main steps for solving Task 3

We proceed in the following steps:

Step 1. Define the concept of a Turing machine and the notion of behavior of type 0.

Step 2. Show that the tape of a Turing machine can be replaced by a GRAM.

Step 3. Show that system of Figure 12 can be trained in an experiment of supervised learning
to simulate the finite-state part of any Turing machine.

Step 4. Prove the theorem of Task 3.

26

7.2 The concept of a Turing machine: behavior of type 0

A Turing machine is a finite-state machine interacting with an external read/write memory -
traditionally, a tape divided into squares (Figure 11). Theoretically, the tape has infinite length.
However, as was explained in Section 1.2, this requirement is not important from the practical
viewpoint. Even a finite tape cannot be treated as a finite-state machine because the number of
states of such a tape explodes exponentially with the number of squares.

A classical Turing machine has a read/write head the position of which indicates the position
of a single square of the tape called the scanned square. The address of the scanned square doesn't
need to be defined explicitly as it is done in the case of a RAM, or a GRAM (Section 4.1). At
each step the Turing machine can perform the following elementary operations:

scanned square
TAPE /

n-r~nTärbi~rrn
AT

HEAD

read
1 t write

move
xl - ■ vl

f
1 *

y2
x2 y3

s(v)
-| V -i L s(v+l)

Figure 11: The general architecture of a Turing machine

1. Read a symbol from a scanned square.

2. Write a symbol into the scanned square.

3. Move the head one square to the right, one square to the left, or stay in the same square.

4. Change the current state of mind (see definition below) to the next state of mind.

Definition. A finite-state part of a Turing machine is a deterministic finite-state machine
T=(X,Y,S,f,sO), where

X is the set of external symbols read from the tape;

S is the set of internal symbols representing the states of mind of a Turing machine. This set
includes a special halt symbol H. A Turing machine stops when it enters the halt state.

27

50 G S is a symbol representing the initial state of mind of the Turing machine.

y = SxMxXis the set of output symbols representing the reactions of the Turing machine.
This set is the product of the three sets:

S is the set of the next states of mind (the same as the set of the current states of mind).

M = {R, L, 5} represent the movements of the head, where R, L, and S mean, respectively,
move one square to the right, move one square to the left, and stay in the same square.

X is the set of symbols that can be written on tape (the same as the set of symbols that
can be read from the tape).

/ : X x S —► Y is the function represented as the set of quintuples called productions or commands
of the Turing machine.

A behavior that can be represented in terms of a Turing machine will be called a behavior of
type 0.

7.3 Learning to simulate the finite-state part of a Turing machine

It is convenient to redraw the lower part of Figure 4 including system AM, nuclei NM, and Teacher
as shown in Figure 12. We also included the one-step delayed speech feedback s{v) —► s{v — 1).
Because of this feedback, system AM needs to work only as a combinatorial machine.

Figure 12: Training system AM of Figure 4 to execute the program of a Turing machine.

Remarks

1. It should be emphasized that the introduction of the speech feedback, s{v) —* s{v — 1),
allows us to treat the states of mind, s(i/), of the simulated Turing machine as observable
variables available for learning. This makes it theoretically possible to learn to simulate
the finite-state part of any Turing machine. The corresponding learning problem would be
theoretically unsolvable if the states were treated as hidden variables.

28

2. In traditional theories of symbolic learning, the internal states of the teacher (the target
machine) are treated as hidden variables the structure of which must be uncovered by a
learning algorithm. We argue that this traditional approach is too restrictive when it comes
to the problem of human learning. A human learner doesn't view a human teacher as an
absolutely black box. The black box approach to learning leads to implications, such as,
e.g., the Gold theorem [16], that are not supported by observations. As humans, we have
a great deal of built-in information about the internal states of other humans. See Section
7.8.

To prove the theorem of Task 2 we will assume that system AM in Figure 12 is organized
as Model 2.2 with a = 0, m = 2, and p = 3. As in Section 6.4, we divide the experiment into
training and examination.

Training. Training starts at v — z/0 and lasts until v = v\ — 1, where v\ is the first moment of
examination. The following conditions are satisfied:

1. sei = 1, and, accordingly, xy(:) = yT(:).

2. At the beginning of training, LTM is empty. That is, for i = 1 : n gx(l,i)(v0) =
gx(2,i)(v0) = e; gy(l,i)(vQ) = gy(2,i)(v0) = gy(3,i)(iA)) = e, and wptr(uO) = 1.

3. Learning is enabled: wen = 1. We assume that the LTM is big enough to store all
training sequence. That is, n > v\ - i/O.

Examination. At this stage, sei = 0, and xy(:) = y(:). For simplicity, we assume that AM
does not learn during this stage, that is, wen = 0. This requirement is not necessary. If n
is big enough, AM could continue recording data in its LTM.

Theorem 4. System AM defined above learns to simulate the finite state part of any Turing
machine, if each command of this machine is presented at least once at the stage of training.

Proof The theorem follows from the definition of a finite-state part of a Turing machine (Section
7.2), the Theorem 3 of Section 6.4, and the fact that any finite-state machine can be represented
as a combinatorial machine with a one-step delayed feedback (Section 6.6). D

7.4 Replacing TAPE and HEAD by a modified GRAM

Let us compare the (TAPE,HEAD) system of the Turing machine shown in Figure 11 with the
external system (W,D) shown in Figure 5. The read output is similar to dout output, the write
input is similar to din input. However, the move input is different from addr input. To resolve
this problem we need to slightly improve system (W,D) so it will be to correctly react to move

iibols, move € M = {L,R,S}. The easiest way to achieve this goal is to slightly modify the
formal description of GRAM from Section 4.1. Instead of expressions (4.1.1) and (4.1.2) we will
use the following expressions:

(1) if (move == R) addr = addr + 1;
else if (move == L) addr = addr — 1; end

29

(2)

(3)

if (din == e) dout = mem(addr);

else dout = din; mem(addr) - din; end

Expression (1) can be interpreted as an addition of a transducer, TR, shown in Figure 13 to
system (W,D) of Figure 5 a). The transducer works as a bidirectional counter that increments
when move = R and decrements when move = L. The input move = S has no effect.

External system

D

doutu

addr TR move

din

»-

Figure 13: Adding transducer, TR, to make system (W,D) behave as (HEAD, TAPE) of a Turing
machine in Figure 11.

7.5 Computations with the use of external tape

Consider the following experiment with the robot of Figure 3. Assume that the transducer TR
shown in Figure 13 is introduced at the output of centers NM1. This output will produce the
move € M = {L, R, S} symbols of the simulated Turing machine.

Training. At this stage NS.sel = 1. The robot's eye is open and the motor system AM sees a
symbol dout read from the tape (screen). The teacher forces the robot to perform several example
of an algorithm with different input data presented on tape. The examples are selected in such a
way that each command of simulated Turing machine is executed at least once.

Examination. At this stage, NS.sel = 1 - the eye is open. The teacher presents new data
on tape, positions the robot's eye in the first square (traditionally, the leftmost square), and sets
the robot's initial state of mind by forcing the robot to utter the initial symbol. From this moment
on the teacher does not interfere and the robot performs computations automatically.

Theorem 5. Let Model 2.2 be used as system AM of Figure 8. There exist parameters of AM
such that after the described Training the robot of Figure 3 passes the described Examination.

Proof The result follows from the Theorem 4 of Section 7.3. D

30

7.6 Computations with the use of imaginary tape

In Section 5.2, we have shown that system AS of Figure 3, organized as Model 2.2, can learn
to simulate any GRAM. The minimum length of the training sequence is m • n, where m is the
number of data symbols and n is the number of locations of the simulated GRAM - each data
symbol needs to be written at least once in each location of the GRAM. For example it takes
2 • 100 = 200 steps to learn to simulate a tape with 2 symbols and 100 locations. This is a
very short training sequence as compared to the number of states of the GRAM. The latter is
mn = 2100 in the case of the GRAM simulating the above tape.

Using the described property of system AS we can enhance the experiments of training and
examination described in the previous section to allow the robot to learn to perform computations
without seeing the external tape. Let us modify the experiments of training and examination as
follows. We assume that the robot will never use more than n locations of the external tape.

Training. This stage is similar to the training in the previous section except, the robot must be
forced by the teacher to perform all move commands in each of the n locations of the tape. This
means that the length of the training sequence increases roughly proportionally to n. (There is
no combinatorial explosion of the type mn.)

Examination. This stage is divided into two parts.

1. At this stage, NS.sel = 1 - the eye is open. The teacher presents new data on tape, positions
the robot's eye in the first square.

2. The teacher forces the robot to scan new data, return to the first square, and utter the initial
symbol. From this moment on NS.sel = 0 (the eye is closed), the teacher does not interfere,
and the robot performs computations using the imaginary tape simulated by system AS.

Theorem 6. Let Model 2.2 be used as both system AS and system AM of Figure 3. There exist
parameters of AS and AM such that after the described Training the robot of Figure 3 passes the
described Examination.

Proof. The result follows from the Theorem 1 of Section 5.2 and the Theorem 4 of Section 7.3. D

7.7 The C++ program EROBOT (Task 4)

The C++ program called EROBOT allows the user to perform the experiments described in
sections 7.5 and 7.6 with the robot of Figure 3. The simulations confirm that the corresponding
theorems do hold.

The main screen of the program EROBOT performing the parentheses checker algorithm [20]
is shown in Figure 14. The screen displays three dialog boxes representing the systems: (1) the
external system (W,D) - the left box, (2) the mental imagery system AS - the upper right box,
(3) the motor control system AM - the lower right box. The user can perform a broad range
of experiments with the program and teach it to perform algorithms representable as Turing
machines with up to 1000 commands.

31

.; ■ 1 xi

m n 1

■

n 1 1 I A(I t |l|l I A
a | AC < 1 1 •)]) *

0 e A« , ; (fi) ,. , A

21 0 c A(((I)) 1) A

20 0 0 a A((|()) 1) *
19 D 0 R A r_■(()))) A
18 0 A?! ((i ') 1 A
17 .. i i I ■((<(>>•>*
16 - ABC (t M)) *
15 * A< ■(()])) A
14 * * Af 1 •() >) 1 A
13 i AC dill) J A
12 i 4 L A(1 I f ■)) 1 A
11 4 A((((1) 1 A
10 i 4 L MllDlllA

9 i 4 I A ({ C (11 I BA
8 3 » A (I . () 1)) ■
y , k('li)ll|A
6

1
3 » AMIIIlfl*

5 ■ } fr |A< M () ■) » A
4 3 f> A 6l) 1 A

3 3 R A((<■)))) A
2 3 P A(«■()))) A
1

■) K Al ■(())}) A

...-..«]

«1 I s.ymb<x_»»t«Ttfi

O j yymt>o)_t»»0

i tß syT*o._rn*fl

—»|0 0' 455667788990011 »233

AAAAAAAAAA((({

AAAAA AAAAAAAA A A A A -

AAAAAAAAAAAAAAAAAAA

■ü

wmn«f«iÖ writ«_ptn-

I

«ymbol.utl»(*d

jt'ar ..m;Tr.

»mj*_SYm(»i

l3 .CJ036 PU«- M

0 000t1122 2HH 333333444444

0 1 2 0 0 M ' f- • 333334044444

»RRimni:

Of j CW1H|

y«fm«r=4 YKrttjUim

Figure 14: The main screen of the program EROBOT.

7.8 The myth that behavior of type 0 cannot be le«arned

As mentioned in Remark 2 in Section 7.3, some theories of learning equate the problem of learning
with the problem of deciphering the structure of a target machine (teacher) observed as a black
box by another machine (learner). Usually the target machine is treated as a grammar that has
to be identified from the set of sentences [16, 15]. With this definition of learning, the lea:
cannot learn to simulate the behavior of the teacher of the type higher than type 3 (finite-state
grammars).

This general result seems to contradict to our Theorem 1 of Section 5.2 showing that the
behavior of a GRAM can be learned - a GRAM is a system of type 0. In fact, there is no
contradiction. System AS in Figure 7 (learner) does not treat GRAM (teacher) as a black box.
Defined as Model 2.2, system AS has some built-in information about the external system (W,D) -
namely the effect of recency associated with the decay of e(i) matches some fundamental physical
properties of (W,D). Accordingly, the black box limitations do not apply. We argue that the same
holds for the phenomenon of human learning. A human learner does not treat a human teacher,
and other external systems as black boxes. It expects these systems to have certain properties. In
fact, evolution created biological systems in such a way that they can survive in the real physical
world.

Consider the sentence: */ know how you feel". It would be impossible to teach people the
meaning of such concepts as "pain", "pleasure", "imagine", iLthink", "wait", etc., if our brain had
absolutely no built-in knowledge about these concepts. A human teacher and a human learner
have similar brains, so the learner knows a great deal about the internal states of the teacher.
The whole notion of the black-box-learning is a fallacy.

IMPORTANT. If the behavior of GRAM can be learned, then, according to Theorem 6 of
Section 7.6, any behavior of type 0 can be learned. The computer simulation confirms this criti-

32

cally important theoretical result. The result changes the whole attitude toward the problem of
human symbolic learning. It means that to be able to learn anything (to be a learning system
universal in Turing sense) the human neocortex must use a universal learning algorithm close, in
a sense, to the complete memory algorithm used in Model 2.2. Trying to invent a "supersmart"
learning algorithm leads to principal limitations on what can be learned. We argue that the
principal limitations of the traditional symbolic learning systems stem from this pitfall.

8 On a neural implementation of primitive E-machines
(Tasks 6-9)

8.1 An example of an associative neural network with temporal mod-
ulation

It is helpful to have an intuitive link between E-machines and neural networks. Such a link provides
a source of neurobiological heuristic considerations for the design of the models of E-machines
and the source of psychological heuristic considerations for the design of the corresponding class
of neural models. Figure 15 shows the general architecture of a homogeneous neural network
corresponding to a PEM. The architecture was discussed in [7, 9].

i-th location
oflLTM

\
S2104)

Input LTM

modulation
xel next e-state

modulation
next e-state

wnner-take-all
choice

i-th location
ofOLTM

S43(k.i)

Output LTM

Figure 15: An example of a neural implementation of a primitive E-machinc

Large circles with incoming and outgoing lines represent centers - elements that are assigned
certain coordinates in the network. A center with incoming and outgoing lines can be interpreted

33

as a neuron with its dendrites and axons, respectively, or a network functionally equivalent to a
"large neuron". Small circles represent couplings - the elements whose position in the network is
described by a pair of centers communicating through this coupling. A coupling can be interpreted
as a synapse or a circuit functionally equivalent to a "large synapse". The white and the black
small circles represent excitatory and inhibitory synapses, respectively. In what follows we ns<
the terms neuron and synapse instead of the terms center and coupling, respectively 4.

Figure 15 displays six sets of neurons (Nl, N2, N3, N4, N5, and N6) and 10 sets of synapses
(S21, S22, S25, S52, S32a, S32b, S33, S36, S63, S43).

Nj(i) is the i-th neuron from the y-t h set. Skja(n,m) is the synapse between neurons Nj(m) and
Nk(n), where 'a7 is an additional index describing the type of synapse (in case there are several
different types of synapses between the sets of neurons Nj and Nk). The V substituted for an
index indicates the whole subset of elements (variables) corresponding to the entire set of values
of this index. S21(i,:)=(S21(i,l),...S21(i,nl)). S21(:,:) is the same as S21, etc.

The diagram depicts three types of synapses with E-states: el(:),e2(:), and e3(:), serving
different purposes. e2(:) is similar to the e(:) of Model 2.2; el(:) describes the effect of lateral
modulation that allows the network to decode temporal sequences; e3(:) describes spreading
residual excitation producing the effect of broad temporal context. Remark. This neural network
corresponds to a PEM more complex than Model (2.2) [7, 9].

The Input LTM and the Output LTM are implemented, respectively, as the input, and output
synaptic matrices, 521 (:,:) and S4(:,:). The network also has some intermediate synaptic mem-
ory called Structural LTM (SLTM). This memory corresponds to modifiable connections among
neuron decoders, N2, and neuron encoders, N3.

Layer N3 implements a winner-take-all (WTA) choice. The layer has local excitatory feed-
backs, S33, and a global inhibitory feedback via neuron N6 - the, so-called, inhibit-every one-and-
excite-itself principle. The WTA choice could also be implemented by using inhibitory synapses
S33(i2,il) with gains > 1.0 for all synapses except those with i2 = i\ - the, so-called, inhibit-
everyone-but-itself principle. In the next section we explicitly describe the dynamics of the WTA.
In the discussed case analytical solution is possible.

8.2 The dynamics of the winner-take-all choice

To explore the dynamics of the winner-take-all (WTA) layer let us consider a simplified version of
the network of Figure 15 shown in Figure 16. Unlike the network of Figure 15 the simplified model
does not have slow temporal modulation (the E-states). The differential equations describe the
the fast dynamics of the postsynaptic potential of neurons N2. All other elements are described
by algebraic equations. Neurons N2 are treated as first-order linear threshold elements with the
threshold equal to zero. To produce a step-wise (E-machine-like) performance the model has a
periodic inhibitory input xinh- The period of this input, call it Tinh, must be much larger than
the time constant of N2, r (Tin/i ;» r) to allow the transient process to reach its stable state
during each step. Each neuron of layer N2 has an excitatory feedback with the gain a, and an
inhibitory feedback with the gain ß. gfj and gy

ki denote the gains of synapses S21(i,j) and S32(k,i),
respectively. a\ is the output of neuron N2(i).

4 We use the term coupling rather than the traditional term connection to emphasize that, in general, we treat
a synapse as a complex nonlinear dynamical element with E-states, rather than just a connection with a variable
weight.

34

Input programmable
sinaptic matrix

N4

winner-take-all

ßZd,

Output programmable
synaptic matrix

Figure 16: A simplified version of the network of Figure 15 illustrating the WTA dynamics.

j=i

dui
T— + Ui = Si + a-di-q

di =
Ui if u{ > 0

otherwise

q = ß^di + Xinh
ML

71

yk = Y.9*'di

(1)

(2)

(3)

(4)

(5)
t=l

Let all Xj and xlnh (and, therefore, all s,) be step functions of time. Then, for all active neurons
from layer N2 (the neurons for which Ui > 0), the solution of equations (2)-(4) can be represented
in the following explicit form:

u, = &—^(e* - 1) + (ti? - ul)
a — 1

/it

+
1 + ß-ni — a

where

• rii is the number of active neurones from N2.

• v% (i = 1, ...n) are the values of u, at t=0.

35

-bt\ i -.0 „-bt
av

(6)
(1 - e"w) + ul ■ e-

sav and v%v are the average values of Si and tz° for all active neurons from N2. That is,

Parameters a and 6 in ea* and e~H are as follows:

a = (a - l)/r (9)

b=(l + ß-m-a)/T (10)

Let 1 < a < 1 + ß. Then a > 0 and 6 > 0. According to expression (9), neurons N2[i] with
Si > sav increase their potentials ttj. Neuron N2[i] with Si < sav decrease their potentials and
switch off once it, < 0. This reduces ni and increases sav making s< < sav for some additional
neurons from N2. Eventually, only neurons with Si = max(si, ...sn) will have ut > 0. it can be
shown that this equilibrium is unstable if n» > 1. Therefore, in the presence of noise, at the end
of the transient response there will be only one winner randomly selected from the set of neurons
with the maximum level of Sj.

8.3 The C++ program WTA

The WTA program simulates the dynamics of a winner-take-all layer described by equations 2, 3,
and 4. The main screen of the program is shown in Figure 17. The upper dialog box displays the
periodic inhibitory input, xinh- The lower dialog box displays the similarity front, s (yellow lines),
the positive postsynaptic potential, u, of competing neurons (magenta lines), and the negative
postsynaptic potential of the neurons that are turned off by the inhibitory feedback (red lines). If
both a and ß are bigger than one, only one neuron with the maximum Si wins the competition.

Remark. We are currently working on the extension of the WTA program that would allow
the user to explore the competition of spiking neurons. As is known, the winner-take-all choice
can be efficiently implemented in a layer of spiking neurons. Besides being biologically more
consistent, the latter approach has a number of information processing advantages for the neural
implementation of E-machine.

8.4 What is a neurobiological interpretation of E-states?

Theoretically, any dynamic variable with a time constant significantly larger than a "psycholog-
ical" time step, At « 10 — 100msec, can provide a physical implementation of a certain type of
phenomenological E-state. The psychological time step can be contrasted with a uneurobiolog-
ical" time step, dt —► 0. For the purpose of a real time computer simulation, dt can be on the
order of dt = 1 — 10/zsec. We believe that cognitive-level models should be made as independent
of the fast neural dynamics as possible.

The majority of the differential equations used in traditional ANN models can be interpreted
as describing either the accumulation of chemicals in cellular compartments or the accumulation of

36

Figure 17: The main screen of the WTA program.

charges on the surfaces of cellular membranes. The latter dynamics have a small time constant (in
the microsecond range) and cannot be used to implement E-states. In contrast, the accumulation
of rliemicals may have much bigger time constants. We argue however, that the slow dynamics
of chemical concentrations per se does not provide the mathematical sophistication needed for
implementing nontrivial next E-state procedures.

In what follows we discuss a possibility of connecting the dynamics of phenomenological In-
states with the statistical conformational dynamics of ensembles of membrane proteins. The
approach represents a natural system-theoretical extension of the classical Hodgkin and Huxley
theory (HH theory) [14].

In this approach, a single protein molecule is treated as a microscopic probabilistic machine (a
Markov system) with transitional probability densities depending on various macroscopic variables
such as membrane potential and concentrations of different chemicals (neurotransmitters). The
microscopic outputs of all molecules in a certain conformation (state) are summed up to produce
the total macroscopic output of an ensemble of microscopic machines in this state. In the case
of an ensemble of ion channels, the output is the total ion current. In the case of an ensemble of
enzymes, the output is the flow of a chemical (e.g., the second messenger).

The time constants of the macroscopic dynamics of the ensembles of the above machines
depend on the values of the transitional probability densities. The smaller the densities the bigger
the time constants. In the case of the HH model the time constants for sodium and potassium
channels are rather small (milliseconds). In more complex cases, however, it is not unreasonable
to postulate time constants ranging from split seconds, to minutes, to hours, and even to davs
[13].

8.5 The statistical molecular dynamics of E-states

To formalize the above intuitive description we need to introduce the following definitions.

37

Definition. A Probabilistic Molecular Machine (PMM)5 is a system (X, Y, S,a,cj), where

• X and Y are the sets of real input and output vectors, respectively

• S= {SQ, ..., sn-i} is a finite set of states

• a:XxSxS—► R' is a function describing the input-dependent conditional probability
densities of state transitions, where
a(x, Si, Sj)dt is the conditional probability of transfer from state Sj to state Si during time
interval dt,
x e X is the value of input, and R' is the set of non-negative real numbers. The components
of x are called generalized potentials. They can be interpreted as membrane potential and/or
concentrations of different neurotransmitters.

• w:XxS-> Y is a function describing output. The components of y are called generalized
currents. They can be interpreted as ion currents and/or the flows of second messengers.

Let x € X, y 6 Y, s E S be, respectively, the values of input, output, and state at time t, and let
Pi be the probability that s = Si. The work of a PMM is described as follows:

-rf = ^>2a(x,si,sj)Pj - PiY^<x(x,SjiSi) (H)

n-l

att = 0 ^2pi = l (12)
t=0

y = u(x,s) (13)

Summing the left an the right parts of equations 11 for i = 0,..., n — 1, it is easy to verify that
condition 12 holds for any /.

Definition. An Ensemble of Probabilistic Molecular Machines (EPMM) is a set of identical
independent PMMs with the same input vector, and the output vector equal to the sum of output
vectors of individual PMMs.

Let N be the total number of PMMs, TV* be the number of PMMs in state Si (the occupation
number of state s,), and let e, = Ni/N be the relative occupation number of state s,.
We have

n-l

y = NY^eMx,Si) (14)
i=0

The behavior of the average e~i is described by the equations similar to (11) and (12).

~dt=Ylav(x)*J -*£adx) (15)
n-l

att = 0 53% =1 (16)
i=0

38

a»

0 I / n-1

microscopic state

I.,

üTT>^Q-P

Figure 18: The interpretation of the macroscopic E-states as the occupation numbers of the
microscopic states of a PMM.

where a^(x) = a(x, Sj, Sj) describes the rate constant of transfer between states Sj and s*.
The structure of equations 14 and 15 is illustrated in Figures 18 and 19. The diagram of Figure

19 suggests that an EPMM provides a statistical implementation of a mixed-signal computer with
the rate constants serving as input-controlled coefficients (that can serve as switches).

Input-controlled
coefficient matrix

-laix^j.
i>k

+t1 M
>H—[>

>
T

*V/

Figure 19: An EPMM as a mixed signal statistical computer.

This implementation is extremely robust because the properties of the whole computer are
determined by the properties of a single PMM. No interaction among PMMs is needed. Variable
external connections are replaced by variable internal probabilities, and statistics does the trick.
It is tempting to say that, in the same way as statistical mechanics of simple molecules leads
to thermodynamics, the statistical mechanics of very complex molecule-machines leads to neural
computations.

5 One can also interpret the abbreviation PMM as standing for Protein Molecule Machine.

39

Another obvious advantage of the EPMM implementation of the dynamics of E-states is that
this implementation relies on molecular time - the time constants do not depend on volatile
parameters of neurons, synapses, and neural networks.

8.6 The C++ program EPMM

The EPMM program allows the user to simulate the dynamics of a cell with up to 10 different
types of PMM each having up to 18 states. Two modes of simulation are supported: (1) the
differential equation mode (n —► oo), and (2) the Monte Carlo mode with up to n=10000.

Figure 20 presents the main screen of the program in the course of simulation of the spike
dynamics in an HH-type of neuron. The sodium and potassium channels are represented as
PMM's with 5 states shown on the screen. The user can change the structure of the PMM's on
the fly and immediately see how this change affects the shape and the frequency of spikes.

^rü
la an SsaL

tfimn I—la—

*L_

c* In««
AMI - Itt, --.:■- -j oöäa uazns _ _ ■•

rr
~^~ _«4aafi_

zyx573-T5y

Figure 20: The main screen of the EPPM program.

Remarks:

1. The EPMM formalism gives one a tool for implementing a broad range of sophisticated next
E-state procedures. The complexity of such procedures depends on the postulated structure
of the PMM's and on the way the EPMM's interact in a cell via membrane potential and
second messengers.

2. We use the HH theory as a test case for the EPMM formalism. In the example shown in
Figure 20, two simple PMMs corresponding to sodium and potassium channels, interacting
via common membrane potential, produce quite sophisticated spike dynamics. Much more
complex dynamics can be implemented in a similar way by using more complex PMMs.

40

3. Using the software similar to EPMM and EROBOT, a broad range of neurobiological and
psychological implications of different hypotheses about the properties of membrane proteins
can be explored via computer simulation. Accordingly, the discussed approach offers a
solid foundation for a multidisciplinary research aimed at the development of a biologically
consistent and predictive (rather than merely biologically inspired) mathematical theory of
the brain.

9 Promising directions of research

There are many interesting problems and possibilities associated with the development, explo-
ration, and understanding the symbolic/dynamical computational paradigm represented by E-
machines. These include:

1. Decoding temporal sequences. Adding lateral pre-tuning to the next E-state procedure
addresses this problem. The corresponding PEM can learn to simulate, in principle, any
output independent finite memory machine. Introducing a delayed feedback in the above
PEM leads to a system capable of learning to simulate any output dependent finite memory
machine [7, 9].

2. Waiting associations. One can add an E-state creating an effect of waiting association.
In this way one can produce an effect of a finite stack without using a RAM buffer, and
simulate context-free grammars with limited memory. This allows one to get an effect of
calling and returning from subroutines [7].

3. Broad temporal context. This effect can be produced by adding different types of "spread-
ing" E-states. Changing the time constants and the radii of spread of such E-states leads
to a broad range of effects of context-dependent mental set [7, 9, 33].

4. Active scanning of associative memory. People can answer the questions about what
happened after or before a certain event. This effect can be achieved by first creating an
E-state profile that activates the information about the mentioned event, and then actively
shifting this profile in the time-wise or counter-time-wise direction. This can be done by
introducing additional control inputs in a PEM.

5. Inhibiting data with given features. One does not have to think about the E-states
excitations" or "activations". One can imagine the E-states producing inhibiting, pre-

inhibiting, pre-activating, post-activating, etc. effects. In fact, any functions over sets of
data stored in the LTM that assign some dynamic labels to the subsets of data can be
thought of as different kinds of E-states. For example, one can imagine a situation in which
one first creates an E-state activating a set of data (by addressing this data by content),
and then temporarily inhibits the selected set of data by sending some inhibiting control
input. The brain has many different neurotransmitters and receptors that may justify
different hypotheses about the possible types of such control inputs. This again points to
the importance of complex molecular computations mentioned in Section 8.6.

41

6. From signals to symbols and vice versa. The most likely candidate for the E-machine
paradigm is the neocortex. In this metaphor, system AM corresponds to the frontal lobe,
whereas system AS corresponds to the other three lobes as shown in Figure 21.

Motor and sensory of the neocortex

Motor control Working memory, eptsodrc
memory, and mental imagery

AM AS

Pr#c#otrftt Central PottcMtrai
9Y~* *u»cu* gyms

FRONTAL LOB4E

. ;>

,^^/ggjm^^i PAMETAL L08E

>

3 * OCCIPITAL
•"" /- LOBE

TEMPORAL LOBE

Figure 21: The AM <=> AS architecture of the human neocortex

To make the E-machine paradigm practically implementable at the level of the neocortex,
the lower levels of the brain must be able to convert sensory signals into sensory symbols,
and motor symbols into motor signals. One of the possibilities is that the signal-to-symbol
conversion is done by different feature detectors. Each detector would have a fixed sparse
ID serving as a unique pointer to this detector. The sets of such IDs would form primary
sensory alphabets. Similarly, the units generating primary motor features would have sparse
IDs forming primary motor alphabets. With this approach, the higher association areas of
the neocortex could deal mostly with symbols represented by the sparse IDs.

6. High dimensionality of sensory devices. On the blessing of dimensionality. One
of the striking differences between the signal processing in the biological brain and that in
artificial cognitive systems is the dimensionality of inputs and outputs. As an example it
is helpful to consider a typical automatic speech recognition (ASR) system and compare it
with the human speech recognition (HSR) system [30]..

A typical ASR system described in [31] starts with the 256-dimensional input vector repre-
senting short-term Fourier coefficients of the overlapping speech frames sampled 100 times
per second. After several steps of intermediate processing, this 256-dimensional vector is
transformed into, 39-dimensional vector consisting of 12, so-called, cepstral coefficients (and
their two time derivatives), and the, so-called, log frame energy (and its two time deriva-
tives). This 39-dimensional vector is presented to the higher levels of the ASR system for

42

further processing.

The HSR system starts with w 4000-dimensiorial vector representing the output of the
inner hair cells in cochlea of each ear. See Figure 22. This vector can be thought of as
some counterpart of the 256-dimensional vector of the short-term Fourier coefficients of the
ASR system. The number of cells processing the above auditory input expands to w 90,000
cells in the cochlear nucleus, to % 390,000 cells in the inferior colliculus, to % 580,000
cell in the medial geniculate body of the thalamus, to « 100,000,000 cells in the primary
auditory cortex. The firing of the subsets of the latter cells represent the auditory world to
the higher levels of the neocortex. How can the higher levels make sense of this extremely
high-dimensional input?
It is intuitively obvious that there must exist some blessing of dimensionality that is effi-
ciently utilized by the higher levels of the HSR system. The metaphor ''neocortex as an
E-machine" provides an insight into the nature of this blessing of dimensionality. The neo-
cortex is a massively parallel system. It does not have time to compute different auditory
features on the fly. However, it can efficiently pre-tune the subsets of the already formed
feature detectors by changing the E-states. The more feature detectors are formed in the
primary auditory cortex, the easier it is for the higher levels of the neocortex (organized as
E-machines) to pre-tune the needed subsets of feature detectors depending on context.

Intuitively, the combinatorial possibilities of parallel dynamic reconfiguration associated
with the "nonclassicaT symbol processing paradigm employed by E-machines (dealing with
functions representing subsets of pointers to activate subsets of "immovable symbols") over-
comes the curse of dimensionality. In contrast, this curse plagues all systems that rely
on 'classical" symbol manipulation techniques (dealing with pointers to move symbols in
memory). This holds for the higher levels of processing in all existing ASR systems we are
aware of.

-100.000.000 cell* 3*

-580.000 oelte

-390.000 ceM& v^

-90.000 cete

-4.000 inner hair ceife
-12.000 outer har cells

-30 000 fibers

Figure 22: Human auditory pathways: there must exist some blessing of dimensionality.

43

7. Sparse recoding in a hierarchical structure of associative memory. As mentioned
before, a complex E-machine (CEM) is a hierarchical associative learning system built from
several PEMs. The concept of sparse IDs can be extended to allow the PEMs of higher levels
to store data in terms of sparse-recoded references to the data stored in the PEMs of lower
levels. This would naturally produce different effects of data compression and chunking (see,
for example, [1]).

8. Communication via association fibers. The sparse encoding of symbols addresses the
question of how the homogeneous areas of the neocortex of different modalities and levels
(treated as PEMs) could efficiently communicate via association fibers. The numbers of
association fibers are not big enough to provide crossbar connectivity. In the case of sparse
encoding of symbols, several symbolic messages could be sent simultaneously with a low level
of crosstalk. This would allow any small subset of talkers to broadcast their sparse-encoded
messages simultaneously to large numbers of listeners. The only limitation is that not too
many talkers must talk at the same time through the same set of association fibers. As an
example, our estimate shows that around m « 50 neuron-talkers can talk simultaneously
ton« 109 neuron-listeners through k w 104 association fibers. That is, any-nl-to-any-n2
communication is physically impossible if nl = nl = 109 - it would require 1018 connections.
However, any-m-of-nl-to-any-n2 communication is quite possible if m « 50, and nl = n2 «
109.

9. Computing statistics on the fly depending on context. At the symbolic level, the
brain may not pre-compute statistics at the time of learning because statistics depends on
context. How could the neocortex compute statistics on the fly depending on context? A
sparse encoding of symbols offers a solution to this problem. If we change the procedures
of CHOICE and ENCODING to allow several sparse-encoded symbols to be read simulta-
neously from the locations of OLTM with a "high enough" level of activation, sununing up
several sparse vectors produces a statistical filtering effect [7].

10. Natural language. This is the most challenging and interesting problem that, we believe,
is well suited for the E-machine paradigm. It takes less information to dynamically activate
the data structures that are already present in the LTM than to create new data structures.
Even less information is needed if some data structures are already pre-tuned through the
inputs of other modalities. Accordingly, unlike the statements of a formal language, the
sentences of a natural language do not need to carry complete information. A hint can
be sufficient to remove ambiguity in a given context. This sheds light on why people with
similar backgrounds (G-states) and mental sets (E-states) can efficiently communicate via
short messages, whereas people with different backgrounds and mental sets have difficulties
understanding each other.

11. Emotions and motivation. We should mention the problem of emotions and motivation.
Can the E-machine paradigm shed light on this problem? Let us postulate that, at a higher
level, there exists some symbolic representation of emotions - otherwise our language would
not have the names for our emotional states. If this postulate is correct, the E-machine
formalism can be applied to the higher level learning involving emotions. People remember
t heir pleasant and unpleasant emotional states. This means that, at a higher level, the effect

44

of positive/negative reinforcement cannot be reduced to the effect of increasing/decreasing
the weights of sensorimotor associations. We postulate that, at a higher level, the brain forms
associations involving the symbols representing emotions and other observable internal (I)
states. The sets of these associations can be dynamically reconfigured depending on context
by changing the E-states. This helps to understand why our concepts of "good" and "bad"
depend on our knowledge and mental set.

It is easy to imagine a situation when retrieving emotional symbols affects control inputs
that change the E-states that, in turn, affect the retrieval of emotional symbols, and so on.
This would shed light on the nature of various self-reinforcing loops, such as the well known
panic attack loop.

12. Long-term learning. The utility problem. One of the most difficult and, practically,
most important problems encountered by traditional AI-type theories of symbolic learning
is the, so-called, utility problem [29, 27, 28] - after a sufficiently long time of learning, t be
performance of a learning system begins to deteriorate. In contrast, human performance
dramatically improves with learning. Our ability to learn increases with learning. We learn
how to learn and even how to learn how to learn. The more knowledge we acquire the easier
it becomes to learn more. Intuitively, this nonlinear effect is the result of learning with the
references to what has already been learned. It also is a result of the brain's remarkable
ability to use knowledge acquired in one context in a large number of other contexts - the,
so-called, transfer of experience between contexts.

We believe that the E-machine type approach to the problem of symbolic learning and con-
text - learning is accumulation of symbolic knowledge in LTM and context is a dynamic
reconfiguration of this knowledge by the functions represented by E-states - is well suited
for tackling the problem of symbolic long-term learning. We argue that only a univer-
sal learning algorithm - an algorithm close, in a sense, to a complete memory algorithm
used in Model 2.2 - can provide the expanding ability to learn and avoid the utility problem.

Remarks:

1. It is important not to confuse the behavior aimed at learning (e.g., studying at the
Stanford university) with a learning algorithm = data storage algorithm. In a Turing
universal learning system, a simple universal learning algorithm can, theoretically, pro-
duce arbitrarily complex behavior aimed at learning. We argue that the critical issue
for the human-like long-term learning is what information to learn rather than how to
store this information in the learner's LTM. Somehow, this critical issue is largely ig-
nored when machine learning is compared with human learning. There is a "gold rush"
for the development of all kinds of smart learning algorithms - hundreds of different
learning algorithms are already invented. The general believe motivating this research
is that the power of the brain is a result of some special learning algorithm(s).

2. It is easy to see that the vision of a "supersmart" learning algorithm is a fallacy. Doing
too much pre-processing of "raw" learning information before storing this information
in LTM is not a good strategy in the case of a system that must deal with a very large
number of contexts. No data storage algorithm can, in principle, know in advance
what information may become useful in future contexts. Therefore, a system capable

45

of efficient ly dealing with a very large number of different contexts must rely on the
power of an efficient dynamic interpretation (decision making) procedure rather than on
a "smart" data storage algorithm. The catch is that the loss of information at the time
of learning is irremediable at the time of decision making. Theoretically, a powerful
enough interpretation procedure can always make up for a dumb but universal learning
algorithm - such as a complete memory algorithm. In contrast, no interpretation
procedure can make up for a smart learning algorithm that loses information.

10 List of topics for Phase II (Task 10)

Here is an extended list of possible topics for the Phase II of the MoB project. The specific topics
will be selected depending on the available resources.

1. Setting real-time simulation environment

The C++ simulation environment on a Windows XP personal computer was sufficient for
proving concepts at Phase I. In fact, we were able to provide a mathematical proof of the
main concepts. This combination of theoretical studies and small scale computer simulations
is not sufficient for Phase II.

In most cases, the behavior of large E-machines cannot be understood theoretically. To
make a serious progress toward understanding the cognitive possibilities of this class of sys-
tems we need to set a development environment allowing real time simulation of hierarchical
E-machines with the size of LTM on the order of 10-100GB. Our estimates of the size of t he
human brain's LTM are on the order of 10-100TB.

We would like to be able to do several large scale simulations demonstrating the efficiency of
the E-machine paradigm for a broad range of cognitive problems that are difficult to solve
using conventional computers6. These include:

2. Motor Control

(a) Afferent synthesis of sequential movements.
Synthesizing a complex sequential motor program by pre-tuning the elements of the
already learned motor programs. Example: babbling syllables and then learning to
produce words consisting of these syllables.

(b) Afferent synthesis of parallel movements.
Synthesizing a complex parallel motor program by sequentially pre-tuning parallel com-
ponents of this program and then executing the whole program in parallel. Example:
learning to play piano by training different hands and then producing two hand move-
ment in parallel.

6What is critically important is that (with an appropriate hardware that can be developed at Phase III), the
E-machine paradigm is scalable to the size of human neocortex. To our best knowledge, this is not true in the case
of the majority of traditional ANN and AI algorithms.

46

(c) Inverse kinematics. Imitating a multi-link arm movement by being shown only
the trajectory of the end of the last link. The trajectory can be executed in many
different ways. The effect is achieved by pre-tuning the elements of the already learned
trajectories. No trigonometric computations used in the traditional approaches to
reverse kinematics are allowed - the brain cannot perform such computations.

(d) Controlling parameters of movements by speech instructions.
(1) Single word instructions: faster, slower, stop, left, right, etc.

(2) Simple sentences. Wait for xl. Find x2. Move to x3. Etc. The system must learn
to execute these instructions, e.g., Wait for .., with the objects zl,z2,.. which were
never presented in the context of these instructions.

3. Active context-dependent pattern recognition.

The system must learn to perform the actions that lead to pattern recognition in a given
context. This is a more sophisticated approach to pattern recognition than just classification.
The system must be able to learn to execute instruction: What is it?

4. Mental set.

The system must interpret the same picture in different ways depending on its mental set.
Example: the Necker cube.

5. Language controlled mental imagery.

The system must be able to generate different mental images depending on speech instruc-
tions.

6. Effects of actively scanning LTM.

The system must learn to scan LTM in response to questions: what was before event x,
what was after event x, etc.

7. Communication among primitive associative memories in a hierarchical associa-
tive memory.

Demonstrating effects of data compression and context-dependent statistical filtering result-
ing from the recoding of associations of lower levels.

8. Comparing the amounts of computations for cognitive-level and neural-level
simulations.

The metaphor "neocortex as an E-machine" suggests that not all details of neural imple-
mentation are important at the cognitive level. It is interesting to compare the amounts
of computations needed for cognitive-level and neural-level simulations. Our preliminary
estimates show that, at the cognitive level, the amount of computations can be reduced by
the factor of 100-1000.

47

References

[1] Anderson, J.R. (1976). Language, Memory, and Thought. Hillsdale, New Jersey: Lawrence
Erlbaum Associates, Publishers.

[2] Asimov, I. (1950) I, Robot. Ballantine Books, New York.

[3] Baddeley, A.D. (1982). Your memory: A user's guide. MacMillan Publishing Co., Inc.

[4] Burns, B.D. (1958). The Mammalian Cerebral Cortex Arnold Publishers.

[5] Chomsky, N. (1956). Three models for the description of language. I.R.E. Transactions on
Information Theory. JT-2, 113-124.

[6] Eliashberg, V. 1967. On a class of learning machines. Moscow: Proceedings of VNIIB, #54,
350-398.

[7] Eliashberg, V. (1979). The concept of E-machine and the problem of context-dependent
behavior. TXU 40-320, US Copyright Office. Available from www.brainO.com.

[8] Eliashberg, V. (1981). The concept of E-machine: On brain hardware and the algorithms of
thinking. Proceedings of the Third Annual Meeting of Cognitive Science Soc, 289-291.

[9] Eliashberg, V. (1989). Context-sensitive associative memory: "Residual excitation" in neural
networks as the mechanism of STM and mental set. Proceedings of IJCNN-89, June 18-22,
1989, Washington, D.C. vol. I, 67-75.

[10] Eliashberg, V. (1990). Molecular dynamics of short-term memory. Mathematical and Com-
puter modeling in Science and Technology, vol. 14, 295-299.

[11] Eliashberg, V. (2005). Ensembles of membrane proteins as statistical mixed-signal computers.
Proceedings, IJCNN 2005.

[12] Gerstner, W., Kistler, M. (2002). Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press.

[13] Hille, B. (2001). Ion Channels of Excitable Membranes. Sinauer Associates, Inc.

[14] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of ion currents and its
applications to conduction and excitation in nerve membranes. J. Physiol. (Lond.), 117:500-
544.

[15] Feldman, J.A. (2006). From Molecule to Metaphor. A Neural Theory of Language. A Bradford
Book, the MIT Press.

[16] Gold, E.M. (1967). Language identification in the limit. Information and Control, 10:44^-4^4-

[17] Kandel, E.,R. (2006). In Search of Memory. The Emergence of a New Science of Mind. W. W.
Norton and Co.

48

[18] Kosko, B. (1992). Neural Networks and Fuzzy Systems. A Dynamical Systems Approach to
Machine Intelligence. Prentice Hall, Inc.

[19] Minsky, M., Papert, S. (1969). Perceptrons. An Introduction to Computational Geometry,
The MIT Press.

[20] Minsky, M.L. (1967). Computation: Finite and Infinite Machines, Prentice-Hall, Inc.

[21] Nauta, W., Feirtag, M. (1986). Fundamental Neuroanatomy, W.H. Freeman and Co..

[22] Nagel, E., and Newman J.R. (1958). Gödel's Proof, New York University Press.

[23] Turing, A.M. (1936). On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Society, ser. 2, 42

[24] Vvedensky, N.E. (1901). Excitation, inhibition, and narcosis. In Complete collection of works.
USSR, 1953.

[25] Wooldridge, D.E. (1963). The Machinery of the Brain. The McGraw-Hill Book Company,
Inc.

[26] Zopf, G.W. (1961). Attitude and Context. In "Principles of Self-organization". Pergamon
Press, 325-346.

[27] Kennedy, W.G., and De Jong, K.A. (2003). Characteristics of long-term learning in Soar and
its applications to the utility problem. Proceedings of the Twentieth International Conference
on Machine Learning, pp. 337-344-

[28] Kennedy, W.G., and Trafton, J.G (2006). Long-term symbolic learning in Soar and ACT-R.
Navy Center for Applied Research in Artificial Intelligence. ACT-R group Web publications.
http://act-r.psy. emu. edu/publications/index.php ?subtopic=55

[29] Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning,
Artificial Intelligence, 42, pp. 363-392.

[30] Dusan, S., Rabiner, L.R. (2005). Can automatic speech recognition learn more from human
speech recognition. Trends in speech technology. Romanian Academic Publisher.

[31] Pellom, B., Hacioglu, K. (2001). SONIC. Technical Report TR-CSLR-2001-01. Center for
Spoken Language Research, Univercity of Colorado, Boulder.

[32] Eliashberg, V., Eliashberg, Y. (2007). The Mathematics of the Brain. Proposal for
DARPA/DSO SOL, DARPA Mathematical Challenges, BAA 07-68. Mathematical Challenge
One. Grant, Award No. FA9550-08-1-0129.

[33] Eliashberg, V. (2009). A nonclassical symbolic theory of working memory, mental com-
putations, and mental set. In press. Available from http://arxiv.org/abs/0901.1152 and
www. brainO. com.

49

REPORT DOCUMENTATION PAGE

r-LCMocuuNUi ntiunra ruun runivi IU int MDUVC Muuncaa.

ncruni UMIC

27-05-2009
z. ntrun i i T re

Final Performance Report
J. UHlCSLUVCntU

15-03-2008- 14-03-2009
*♦. Ill LC MIMU ÖUDI IILC

The Mathematics of the Brain

Oa. LUN I MMU I IMUIVIDCrv

FA9550-08-1-0129

3D. UnMN I IMUIVIDCn

oc. rnuuMMivi CLCiwcw i niutvitjtrc

o. Mumumsi

Eliashberg, Victor, Dr., Eliashberg, Yakov, E>r.

DO. rnujcui wurviDen

oe. i Maiv iMuiviDcn

1,2,3,4, and 6,7,8,9,10
OT. vvunis UI\JI i Nuiviocn

/. rtnrunrviiivu unuMn^Hi luni niMivieiai MNU Muuncaaicai

Avel Electronics
3450 Murdoch Court
Palo Alto, CA 94306-3633

o. rcnruniviiivu UMüHNüM I turn
rttruni rauivtocn

AE-MOB-001

». aruwauniNu/iviunii i uniwu MUCIMUI r\iMiviciai HNU Muuntaaicai

DCMA Northern California
P.O.BOX 232
700 Roth Road, Bldg. 330
1 rciKh Camp. CA 95231-0232

Defense Sciences Office, DARPA
AF Office of Scientific Research

iu. aruwautidviuroiiuti a MUHUIV i IVIIOI

S0507A, DARPA DSO, AFOSR

i i. aruivaun/iviuivi i un o ncrun i
MIMMMM

1^. U\Z> I rilOU I IUN/HVMILMDILI IT 9IMI CIVJCIM I

Distribution unlimited

ia. ourr-LcivicrM IMMT wuica

IH. HD3I HMO I

The project develops a formalism for bridging the gap between symbolic and dynamic levels of the mathematical theory of the brain.
The formalism is based on the hypotheses that the neocortex processes symbolic information in a nonclassical way. Instead of
manipulating data in a read/write memory, as the classical symbolic systems do, the neocortex changes the states of dynamic
memory representing different temporary attributes of data stored in a long-term memory. This nonclassical symbolic/dynamic
computational paradigm is called the concept of E-machine. Intuitively, an E-machine manipulates characteristic functions over the
sets of memory addresses of data rather than addresses and data themselves. The main results include: (1) demonstrating the Turing
universality of the E-machine paradigm, (2) showing how an E-machine can learn to simulate a read/write working memory without
actually re-writing data, (3) demonstrating how the E-machine paradigm can be efficiently implemented in biologically-realistic
neural networks with temporal modulation. Several computer simulations supporting the theoretical results were performed.

i a. auojc^i i tmvia

Cognitive modeling, neural networks, symbolic/dynamic integration, context-sensitive associative memory, working memory

io. acuumi T cLHaairiLMiiura ur:

a. ntruni o. MOO i rmu i

U

c. i ma rMUC

u

i /. LIIVII i MI IUN ur
MOÖIMMUI

SAR

io. iMuiviticn
ur
rMuca

44

i »a. niMivic ur ntaruroaiöLC rcnaun

Victor Eliashberg
13D. icLcrnuwc wuiwotn

(650) 493-6038
aianaara rorm z»o

